Skip to main content

Oxidation of Myofibrillar Thiols: A Mechanism of Contractile Dysfunction Reversible by Dithiothreitol

  • Chapter

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 116))

Abstract

In recent years, experimental and clinical evidence has determined that the reperfusion of previously ischemic myocardium may lead to accelerated cellular damage. In the past this has been attributed to the disruption of cellular membranes (1, 2) following the endogenous generation of oxygen-free radicals (OFR), but more recently there is increasing evidence that damage to cellular proteins is also involved (3, 4). Attempts to quench the endogenous generation of OFR’s with superoxide dismutase and catalase has met with some success, but the long term results have not shown a major reduction in tissue loss (5, 6). OFR’s, such as superoxide anion or the hydroxyl radical, are highly reactive compounds, but have extremely short half-lives (ie 10−9 seconds). However, much of the observed damage to the myocardium occurs several hours after reperfusion (7). This suggests a role for exogenously generated OFR’s or related oxidizing agents in the late development of myocardial reperfusion injury.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chien K., Abrams J., Serroni A., Martin J. and Farber J. Accelerated phospolipid degredation and associated membrane dysfunction in irreversible, ischemic liver cell injury. J. Biol. Chem. 253: 4809 - 4817, 1978.

    PubMed  CAS  Google Scholar 

  2. Meerson F., Kagan V., Kozlov Y., Belkina L. and Arkhipenko Y. The role of lipid peroxidation in pathogenesis of ischemic damage and the antioxidant protection of the heart. Basic Res. Cardiol. 77: 465 - 485, 1982.

    CAS  Google Scholar 

  3. Davies K. Protein damage and degredation by oxygen radicals. I. General aspects. J. Biol. Chem. 262: 9895 - 9901, 1987.

    PubMed  CAS  Google Scholar 

  4. Hashizume H. and Abiko Y. Rapid changes in myofibrillar proteins after reperfusion of ischemic myocardium in dogs. Basic Res. Cardiol. 83: 250 - 257, 1988.

    Article  PubMed  CAS  Google Scholar 

  5. Gallagher K., Buda A., Pace D., Gerren R. and Shalfer M. Failure of superoxide dismutase and catalase to alter size of infarction in conscious dogs after 3 hours of occlusion followed by reperfusion. Circulation 73: 1065 - 1076, 1986.

    Article  PubMed  CAS  Google Scholar 

  6. Richard V., Murray C., Jennings R. and Reimer K. Therapy to reduce free radicals during early reperfusion does not limit the size of myocardial infarct caused by 90 minutes of ischemia in dogs. Circulation 78: 473 - 480, 1988.

    Article  PubMed  CAS  Google Scholar 

  7. Smith E. HI, Egan J., Bugelski P., Hillegass L., Hill D. and Griswold D. Temporal relation between neutrophil accumulation and myocardial reperfusion injury. Am. J. Physiol. 255: H1060 - H1068, 1988.

    PubMed  Google Scholar 

  8. Chatelain P., Latour J., Tran D., de Lorgeril M., Dupras G. and Bourassa M. Neutrophil accumulation in experimental myocardial infarcts: relation with extent of injury and effect of reperfusion. Circulation 75: 1083 - 1090, 1987.

    Article  PubMed  CAS  Google Scholar 

  9. Loewe O.G., Murry C., Richard J., Weischedel G., Jennings R. and Reimer K. Myocardial neutrophil accumulation during reperfusion after reversible or irreversible ischemic injury. Am. J. Physiol. 255: H1188 - H1198, 1988.

    Google Scholar 

  10. Mullane K. Myocardial ischemia-reperfusion injury: role of neutrophils and neutrophil derived mediators. In: Human Inflammatory Disease, 1, (edited by G. Marone, L. Lichtenstein, M. Condorelli and A. Fauci ). Decker, Philedelphia, 1988, pp. 143 - 159.

    Google Scholar 

  11. Engler R., Schmid-Schonbein G. and Pavelec R. Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am. J. Pathol. 111: 98 - 111, 1983.

    PubMed  CAS  Google Scholar 

  12. Klebanoff S. Phagocytic cells: products of oxygen metabolism. In.Inflammation: Basic Principles and Clinical Correlates., (edited by J. Gallin, I. Goldstein andR. Snyderman ). Raven Press, Ltd., New York, 1988, pp. 391 - 444.

    Google Scholar 

  13. Engler R. and Covell J. Granulocytes cause reperfusion ventricular dysfunction after 15-minute ischemia in the dog. Cell Calcium 61: 20 - 28, 1987.

    CAS  Google Scholar 

  14. Barroso-Aranda J., Schmid-Schonbein G., Zweifach B. and Engler R. Granulocytes and no-reflow phenomenon in irreversible hemorrhagic shock. Circ. Res. 63: 437 - 447, 1988.

    PubMed  CAS  Google Scholar 

  15. Korthuis R., Grisham M. and Granger D. Leukocyte depletion attenuates vascular injury in postischemic skeletal muscle. Am. J. Physiol. 254: H823 - H827, 1988.

    PubMed  CAS  Google Scholar 

  16. Fliss H., Masika M., Eley D.W. and Korecky B. Oxygen radical mediated protein oxidation in heart. In:Oxygen Radicals in the Pathophysiology of Heart Disease, (edited by P. Singal ). Martinus Nijhoff Publishers, Boston, 1988, pp. 71 - 90.

    Google Scholar 

  17. Vissers M., Day W. and Winterbourne C. Neutrophils adherent to a nonphagocytosable surface (glomerular basement membrane) produce oxidants only at the site of attachment. Blood 66: 161 - 166, 1985.

    PubMed  CAS  Google Scholar 

  18. Eley D.W., Korecky B. and Fliss H. Dithiothreitol restores contractile function to oxidant-injured cardiac muscle. Am. J. Physiol. 257: H1321 - H1325, 1989.

    PubMed  CAS  Google Scholar 

  19. Mirabelli F., Salis A., Marinoni V., Finardi G., Bellomo G., Thor H. and Orrenius S. Menadione-induced bleb formation in hepatocytes is associated with the oxidation of thiol groups in actin. Arc. Biochem. Biophys. 264: 261 - 269, 1988

    Article  CAS  Google Scholar 

  20. Scherer N. and Deamer D. Oxidation of thiols in the Ca2+-ATPase of sarcoplasmic reticulum microsomes. Biochim. Biophys. Acta 862: 309 - 317, 1986.

    Article  PubMed  CAS  Google Scholar 

  21. Reeves J., Bailey C. and Hale C. Redox modification of sodium-calcium exchange activity in cardiac sarcolemmal vesicles. J. Biol. Chem. 261: 4948 - 4955, 1986.

    PubMed  CAS  Google Scholar 

  22. Sedlak J. and Lindsay R. Estimation of total, protein bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 25: 192 - 205, 1968.

    Article  PubMed  CAS  Google Scholar 

  23. Bishop J., Squier T., Bigelow D. and Inesi G. (Iodoacetamido)fluorescein labels a pair of proximal cysteines on the Ca2+-ATPase of sarcoplasmic reticulum. Biochem. J 262: 4748 - 4754, 1988.

    Google Scholar 

  24. Nicotera P., Moore M., Mirabrelli F., Bellomo G. and Orrenius S. Inhibition of hepatocyte plasma membrane Ca2+ ATase activity by menadione metabolism and its restoration by thiols. FEBS Letters 181: 149 - 153, 1985.

    Article  PubMed  CAS  Google Scholar 

  25. Kawakita M. and Yamashita T. Reactive sulfhydryl groups of sarcoplasmic reticulum ATPase. III. Identification of cysteine residues whose modification with N-ethylmaleimide leads to loss of the Ca2+ transporting activity. J. Biochem. 102: 103 - 109, 1987.

    PubMed  CAS  Google Scholar 

  26. Kako K., Kato M., Matsuoka T. and Mustapha A. Depression of membranebound Na+-K+-ATPase activity induced by free radicals and by ischemia of kidney. Am. J. Physiol. 254: C330 - C337, 1988.

    PubMed  CAS  Google Scholar 

  27. Chaussepied P., Mornet D., Audemard E., Derancourt J. and Kassab R. Abolition of the ATPase activities of skeletal myosin subfragment-s by a new selective proteolitic cleavage within the 50 kilodalton heavy chain segment. Biochem 25: 1134 - 1140, 1986.

    Article  CAS  Google Scholar 

  28. Audemard E., Bertrand R., Bonet A., Chaussepied P. and Mornet D. Pathway for the communication between ATPase and actin sites in myosin. J. Muscle Res. Cell Motil. 9: 197 - 218, 1988.

    Article  PubMed  CAS  Google Scholar 

  29. Wagner P. and Giniger E. Hydrolysis of ATP and reversible binding of F-actin by heavy myosin chain free of all light chain. Nature 292: 560 - 561, 1981.

    Article  PubMed  CAS  Google Scholar 

  30. Kasprazak A.A., Chaussepied P. and Morales M.F. Location of a contact site between actin and myosin in the three-dimensional structure of the acto-S 1 complex. Biochem 28: 9230 - 9238, 1989.

    Article  Google Scholar 

  31. Walker M. and Trinick J. Visualization of domains in native and nucleotide-trapped myosin heads by negative staining. J. Musc. Res. Cell. Motil. 9: 359 - 366, 1988.

    Article  CAS  Google Scholar 

  32. Tada M., Bailin G., Barany K. and Barany M. Biochem 8: 4842 - 4850, 1969.

    Article  CAS  Google Scholar 

  33. Pfister M., Schaub M., Watterson J., Knecht M. and Waser P. Radioactive labeling and location of specific thiol groups in myosin from fast, slow, and cardiac muscle. Biochim. Biophys. Acta 410: 193 - 209, 1975.

    PubMed  CAS  Google Scholar 

  34. Wells J. and Yount R. Active site trapping of nucleotides by crosslinking two sulfhydryls in myosin subfragment 1. Proc. Natl. Acad. Sci. USA 76: 4966–4970, 1979.

    Article  Google Scholar 

  35. Eisenberg E. and Greene L. The relation of muscle biochemistry to muscle physiology. Ann. Rev. Physiology 42: 293 - 309, 1980.

    Article  CAS  Google Scholar 

  36. Collins J. and Elzinga M. The primary structure of actin from rabbit skeletal muscle. J. Biol. Chem. 250: 5915 - 5920, 1975.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Borivoj Korecky Naranjan S. Dhalla

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Eley, D.W., Fliss, H., Korecky, B. (1990). Oxidation of Myofibrillar Thiols: A Mechanism of Contractile Dysfunction Reversible by Dithiothreitol. In: Korecky, B., Dhalla, N.S. (eds) Subcellular Basis of Contractile Failure. Developments in Cardiovascular Medicine, vol 116. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1513-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1513-1_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8813-8

  • Online ISBN: 978-1-4613-1513-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics