Skip to main content

Cardiovascular Membranes as Models for the Study of Free Radical Injury

  • Chapter
Subcellular Basis of Contractile Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 116))

  • 18 Accesses

Abstract

Following ischemia — a condition characterized by oxygen depletion, acidosis, and retention of tissue metabolites (1) — severe oxidative damage to cardiovascular tissues occurs upon reperfusion. However, early reperfusion remains the major clinical method to salvage ischemic myocardium and further elucidation of the multiple injury mechanisms operative during ischemia/reperfusion is necessary to solve this paradoxical dilemma. In the process of ischemia/reperfusion, mounting evidence has confirmed that the generation of oxygen-derived free radicals participates in the injury process (2–4). At the whole organ level, the reported protection of cardiovascular tissues by antioxidant-type enzymes (eg. superoxide dismutase and catalase), antioxidant drugs (eg. deferoxamine) and vitamins (eg. vitamin E) suggest a role for free radicals in the reperfusion injury. In recent years studies employing electron spin resonance spectroscopy and spin-trapping agents have shown that increased production of free radicals occurs during ischemia and myocardial reperfusion (4–11). The specific cellular sites of generation of these toxic free radicals are not known. Certainly white cells migrating into ischemic/reperfused areas of myocardium are capable of generating significant amounts of superoxide anions (2,12–14); endothelial cells (15–17) and cardiomyocytes (18) have been reported to generate oxygen-derived free radicals as well. Nevertheless, the relative contribution of each of the various cell types to the overall process of injury of cardiovascular tissues remains an area of intense investigation. One significant challenge for this area of investigation is whether or not sufficient radicals accumulate to overwhelm the intrinsic cellular protective mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Corr, P.B., Gross, R.W. and Sobel, B.E. Amphipathic metabolites and membrane dysfunction in ischemic myocardium. Circ. Res. 55:135–154, 1984.

    CAS  Google Scholar 

  2. Simpson, P.J., Fantone, J.C. and Lucchesi, B.R. Myocardial ischemia and reperfusion injury: oxygen radicals and the role of the neutrophil. In: Oxygen radicals and tissue injury, edited by Halliwell, B. Bethesda, MD: Federation of American Societies for Experimental Biology, 1988, p. 63–77.

    Google Scholar 

  3. McCord, J.M. Free radicals and myocardial ischemia: overview and outlook. Free Radical Biology Medicine 4:9–14, 1988.

    Article  PubMed  CAS  Google Scholar 

  4. Kramer, J.H., Arroyo, C.M., Dickens, B.F. and Weglicki, W.B. Spin-trapping evidence that graded myocardial ischemia alters post-ischemic superoxide production. Free Free Radical Biology Medicine 3:153–159, 1987.

    Article  CAS  Google Scholar 

  5. Weglicki, W.B., Arroyo, C.M., Kramer, J.H., Mak, I.T., Leiboff, R.H, Mergner, G.W. and Dickens, B.F., Applications of spin trapping/ESR techniques in models of cardiovascular injury. In: Oxy-radicals in molecular biology and pathology (UCLA symposia on molecular and cellular biology; New series, volume 82), edited by Cerutti, P.A., Fridovich, I. and McCord, J.M. New York: Alan R. Liss, Inc., 1988, p. 357–364.

    Google Scholar 

  6. Monitini, J., Bagby, G.J. and Spitzer, J.J Importance of exogenous substrates for the energy production of adult rat heart myocytes. J. Mol. Cell. Cardiol. 13:903–611, 1981.

    Article  Google Scholar 

  7. Arroyo, C.M., Kramer, J.H., Leiboff, R.H., Mergner, G.W., Dickens, B.F. and Weglicki, W.B. Spin trapping of oxygen and carbon-centered free radicals in ischemic canine myocardium. Free Radical Biology Medicine 3:313–316, 1987.

    Article  PubMed  CAS  Google Scholar 

  8. Bolli, R., Patel, B.S., Jeroudi, M.O., Lai, E.K. and McCay, P.B. Demonstration of free radical generation in “stunned” myocardium of intact dogs with the use of the spin trap alph-phenyl N-tert butyl nitrone. J. Clin. Invest. 82:476–485, 1988.

    Article  PubMed  CAS  Google Scholar 

  9. Garlick, P.B., Davies, M.J., Hearse, D.J. and Slater, T.F. Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circ. Res. 61:757–760, 1987.

    PubMed  CAS  Google Scholar 

  10. Blasig, I.E. and Ebert, B. Identification of free radicals trapped during myocardial ischemia. Studia Biophysica 116:35–41, 1986.

    CAS  Google Scholar 

  11. Bolli, R., Jeroudi, M.O., Patel, B.S., et al. Direct evidence that oxygen-derived free radicals contribute to postischemic myocardial dysfunction in the intact dog. Proc. Natl. Acad. Sci. USA 86:4695–4699, 1989.

    Article  PubMed  CAS  Google Scholar 

  12. Hess, M.L., Rowe, G.T., Caplan, M., Romson, J.L. and Lucchesi, B. Identification of hydrogen peroxide and hydroxyl radicals as mediators of leukocyte-induced myocardial dysfunction. Limitation of infarct size with neutrophil inhibition and depletion. Adv. Myocardiol. 5:159–175, 1985.

    CAS  Google Scholar 

  13. Menasch, P., Pasquier, C., Bellucci, S., Lorente, P., Jaillon, P. and Piwnica, A. Deferoxamine reduces neutrophil-mediated free radical production during cardiopulmonary bypass in man. J. Thor. Cardiovas. Surg. 96:582–589, 1988.

    Google Scholar 

  14. Engler, R.L. Free radical and granulocyte-mediated injury during myocardial ischemia and reperfusion. Am. J. Cardiol. 63:19E–23E, 1989.

    Article  PubMed  CAS  Google Scholar 

  15. Rosen, G.M. and Freeman, B.A. Detection of superoxide generated by endothelial cells. Proc. Natl. Acad. Sci.USA 81:7269–7273, 1984.

    Article  CAS  Google Scholar 

  16. Ratych, R.E., Chuknyiska, R.S. and Bulkley, G.B. The primary localization of free radical generation after anoxia/reoxygenation in isolated endothelial cells. Surgery 102:122–131, 1987.

    PubMed  CAS  Google Scholar 

  17. Zweier, J.L., Kuppusamy, P. and Lutty, G.A. Measurement of endothelial cell free radical generation: Evidence for a central mechanism of free radical injury in postischemic tissues. Proc. Natl. Acad. Sci. USA 85:4046–4050, 1988.

    Article  PubMed  CAS  Google Scholar 

  18. Blasig, I.E., Ebert, B., Wallukat, G. and Loewe, H. Spin trapping evidence for radical generation by isolated hearts and cultured heart cells. Free Radical Res. Comms. 1989.(In Press).

    Google Scholar 

  19. Okabe, E., Hess, M.L., Oyama, M. and Ito, H. Characterization of free radical-mediated damage of canine cardiac sarcoplasmic reticulum. Arch. Biochem. Biophys. 225:164–177, 1983.

    Article  PubMed  CAS  Google Scholar 

  20. Freeman, B.A. and Crapo, J.D. Biology of disease. Free radicals and tissue injury. Lab. Invest. 47:412–426, 1982.

    CAS  Google Scholar 

  21. Kramer, J.H., Mak, I.T. and Weglicki, W.B. Differential sensitivity of canine cardiac sarcolemmal and microsomal enzymes to inhibition by free radical-induced lipid peroxidation. Circ. Res. 55:120–124, 1984.

    PubMed  CAS  Google Scholar 

  22. Weglicki, W.B., Dickens, B.F., Mak, I.T. and Kramer, J.H. Free radical injury of myocardial membranes. Life Chemistry Reports 3:189–198, 1985.

    CAS  Google Scholar 

  23. Mak, I.T., Kramer, J.H. and Weglicki, W.B. Potentiation of free radical-induced lipid peroxidative injury to sarcolemmal membranes by lipid amphiphiles. J. Biol. Chem. 261:1153–1157, 1986.

    PubMed  CAS  Google Scholar 

  24. Weglicki, W.B., Mak, I.T., Dickens, B.F. and Kramer, J.H. Models of injury of cardiovascular membranes by amphiphiles and free radicals. In: Myocardial ischemia. Advances in Myocardiology, vol. 8, edited by Dhalla, N.S., Innes, I.R. and Beamish, R.E. Boston, MA: Martinus Nijhoff Publishing, 1987, p. 113–122.

    Google Scholar 

  25. Mak, I.T. and Weglicki, W.B. Protection by beta-blocking agents against free radical-mediated sarcolemmal lipid peroxidation. Circ. Res. 63:262–266, 1988.

    PubMed  CAS  Google Scholar 

  26. Mak, I.T., Arroyo, C.M. and Weglicki, W.B. Inhibition of sarcolemmal carbon-centered free radical formation by propranolol. Circ. Res. 65:1151–1156, 1989.

    PubMed  CAS  Google Scholar 

  27. Zigler, J.S., Jr., Badaness, R.S., Gery, I. and Kinoshita, J.H. Effects of lipid peroxidation products on the rat lens in organ culture: A possible mechanism of cataract initiation in retinal degenerative disease. Arch. Biochem. Biophys. 225:149–156, 1983.

    Article  PubMed  CAS  Google Scholar 

  28. Bird, R.P., Basrur, P.K. and Alexander, J.C. Cytotoxicity of thermally oxidized fats. In Vitro 17:397–404, 1981.

    Article  PubMed  CAS  Google Scholar 

  29. Ito, T. and Yoden, K. Formation of fluorescent substances from degradation products of methyl linoleate hydroperoxides with amino compound. Lipids 23:1069–1072, 1988.

    Article  Google Scholar 

  30. Hicks, M., Delbridge, L., Yue, D.K. and Reeve, T.S. Increase in crosslinking of nonenzymatically glycosylated collagen induced by products of lipid peroxidation. Arch. Biochem. Biophys. 268:249–254, 1989.

    Article  CAS  Google Scholar 

  31. Vaca, C.E. and Harms-Ringdahl, M. Nuclear membrane lipid peroxidation products bind to nuclear macromolecules. Arch. Biochem. Biophys. 269:548–554, 1989.

    Article  CAS  Google Scholar 

  32. Gutteridge, J.M.C. Lipid peroxidation: Some problems and concepts. In: Oxygen radicals and tissue injury, edited by Halliwell, B. Bethesda, Md: Federation of American Societies for Experimental Biology, 1988, p. 9–19.

    Google Scholar 

  33. van Deenen, L.L.M. Phospholipids in biomembranes. Progress in the chemistry of fats and other lipids vol 8 part 1:1–127, 1965.

    Google Scholar 

  34. Sevanian, A., Stein, R.A. and Mead, J.F. Metabolism of epoxidized phosphatidylcholine by phospholipase A2 and epoxide hydrolase. Lipids 16:781–789, 1981.

    Article  PubMed  CAS  Google Scholar 

  35. Yasuda, M. and Fujita, T. Effect of lipid peroxidation on phospholipase AZ activity of rat liver mitochondria. Japan J. Pharmacol. 27:429–435, 1977.

    Article  CAS  Google Scholar 

  36. Itabe, H., Kudo, I. and Inoue, K. Preferential hydrolysis of oxidized phospholipids by peritoneal fluid of rats treated with casein. Biochim. Biophys. Acta 963:192–200, 1988.

    PubMed  CAS  Google Scholar 

  37. Tan, K.H., Meyer, D.J., Belin, J. and Ketterer, B. Inhibition of microsomal lipid peroxidation by glutathione and glutathione transferases B and AA. Role of endogenous phospholipase A2. Biochem. J. 220:243–252, 1984.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Borivoj Korecky Naranjan S. Dhalla

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Weglicki, W.B., Dickens, B.F., Kramer, J.H., Mak, I.T. (1990). Cardiovascular Membranes as Models for the Study of Free Radical Injury. In: Korecky, B., Dhalla, N.S. (eds) Subcellular Basis of Contractile Failure. Developments in Cardiovascular Medicine, vol 116. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1513-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1513-1_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8813-8

  • Online ISBN: 978-1-4613-1513-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics