Skip to main content

Cardiac Phosphatidylethanolamine N-Methylation in Normal and Diabetic Rats Treated with L-Propionylcarnitine

  • Chapter
Subcellular Basis of Contractile Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 116))

  • 18 Accesses

Abstract

The mitochondrial oxidation of long-chain fatty acids is a major pathway for energy production in the heart. L-carnitine, a naturally occurring highly polar compound, is essential for transporting long-chain fatty acids across the inner mitochondrial membrane to the site of oxidation, as well as for the export of intramitochondrially produced short-chain acyl esters and for the disposal of unphysiological acyl metabolites (1,2). In fact, myocardial carnitine deficiency has been documented in several heart diseases, both in humans (3,4) and in experimental animal models (5,6). Accordingly, carnitine deficiency can be seen to be associated with an energy deficit arising from the unavailability of fatty acids within the mitochondria. Moreover, the accumulation of long-chain fatty acids and their derivatives, fatty acyl CoAthio esters and fatty acylcarnitine esters due to carnitine deficiency could produce deleterious effects on cardiac structure and function. These metabolites are active detergents and bind to the cell membranes (7), and there is evidence (7,8) that these lipid intermediates alter the functional properties of the myocardial membranes. It has also been suggested that the long-chain acyl derivatives may contribute to the decline of myocardial contractility and may cause intracellular Ca2+ overload (8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bieber, L.L. Carnitine. Ann. Rev. Biochem. 57: 261–283, 1988.

    Article  CAS  Google Scholar 

  2. Siliprandi, N., Sartorelli, L., Ciman, M. and Di Lisa, F. Carnitine: metabolism and clinical chemistry. Clin. Chim. Acta 183: 3–12, 1989.

    Article  PubMed  CAS  Google Scholar 

  3. Tripp, M.E., Katcher, M.L., Peters, H.A., Gilbert, E.F., Arya, S., Hodag, R.J. and Shug, A.L. Systemic carnitine deficiency presenting as familial endocardial fibroelastosis. N. Engl. J. Med. 305: 385–398, 1981.

    Article  PubMed  CAS  Google Scholar 

  4. Kondrup, J. and Mortensen, S.A. Endomyocardial levels of free and total carnitine in patients with cardiomyopathy. Heart Failure 5: 37–40, 1989.

    Google Scholar 

  5. Borum, P.R., Park, J.H., Low, P.K. and Roelofs, R.E. Altered tissue carnitine levels in animals with hereditary muscular dystrophy. J. Neurol. Sci. 38: 113–121, 1978.

    Article  CAS  Google Scholar 

  6. Reibel, D.K., Ubo, C.E. and Kent, R.L. Altered coenzyme A and carnitine metabolism in pressure-overload hypertrophied hearts. Am. J. Physiol. 244: H839 - H843, 1983.

    PubMed  CAS  Google Scholar 

  7. Katz, A.M., Freston, J.W., Messineo, F.C. and Herbette, L.G. Membrane damage and the pathogenesis of cardiomyoapthies. J. Mol. Cell. Cardiol. 17 (Suppl. 2): 11–20, 1985.

    Article  PubMed  CAS  Google Scholar 

  8. Lamers, J.M.J., Stinis, J.T., Montfoort, A. and Hulsmann, W.C. Modulation of membrane function by lipid intermediates: a possible role in myocardial ischemia. In: Myocardial Ischemia and Lipid Metabolism (edited by R. Ferrari, A. Katz, A. Shug and O. Visioli), Plenum Publishing Corp., New York, 1984, pp. 107–125.

    Google Scholar 

  9. Crews, F.T. Phospholipid methylation and membrane function. In: Phospholipids and Cellular Regulation, (edited by J.F. Kuo ). CRC Press, Boca Raton, 1985, Vol. 1, pp. 131–158.

    Google Scholar 

  10. Panagia, V., Ganguly, P.K. and Dhalla, N.S. Characterization of heart sarcolemmal phospholipid methylation. Biochim. Biophys. Acta. 792: 245253, 1984.

    Google Scholar 

  11. Panagia, V., Ganguly, P.K., Okumura, K. and Dhalla, N.S. Subcellular localization of phosphatidylethanolamine N-methylation in rat heart. J. Mol. Cell. Cardiol. 17: 1151–1159, 1985.

    Article  PubMed  CAS  Google Scholar 

  12. Panagia, V., Okumura, K., Shah, K.R. and Dhalla, N.S. Modification of sarcolemmal phosphatidylethanolamine N-methylation during heart hypertrophy. Am. J. Physiol. 252: H8 - H15, 1987.

    Google Scholar 

  13. Okumura, K., Panagia, V., Beamish, R.E. and Dhalla, N.S. Biphasic change in the sarcolemmal phosphatidylethanolamine N-methylation activity in catecholamine-induced cardiomyopathy. J. Mol. Cell. Cardiol. 19: 357366, 1987.

    Google Scholar 

  14. Panagia, V., Okumura, K., Makino, N. and Dhalla, N.S. Stimulation of Cat’ pump in rat heart sarcolemma by phosphatidylethanolamine N-methylation. Biochim. Biophys. Acta 856: 383–387, 1986.

    Article  PubMed  CAS  Google Scholar 

  15. Ganguly, P.K., Panagia, V., Okumura, K. and Dhalla, N.S. Activation of Cat+-stimulated ATPase by phospholipid N-methylation in cardiac sarcoplamic reticulum. Biochem. Biophys. Res. Commun. 130: 472–478, 1985.

    Article  PubMed  CAS  Google Scholar 

  16. Panagia, V., Makino, N., Ganguly, P.K. and Dhalla, N.S. Inhibition of Na+-Ca2+ exchange in heart sarcolemmal vesicles by phosphatidylethanolamine N-methylation. Eur. J. Biochem. 166: 597–603, 1987.

    Article  PubMed  CAS  Google Scholar 

  17. Liu, M-S. and Yang, Y. Phospholipid methylation in canine myocardium: kinetic characteristics and the effect of endotoxin administration. Biochem. Med. Metabol. Biol. 38: 57–68, 1987.

    Article  CAS  Google Scholar 

  18. Ganguly, P.K., Rice, K.M., Panagia, V. and Dhalla, N.S. Sarcolemmal phosphatidylethanolamine N-methylation in diabetic cardiomyopathy. Circ. Res. 55: 504–512, 1984.

    PubMed  CAS  Google Scholar 

  19. Pierce, G.N., Beamish, R.E. and Dhalla, N.S. Heart dysfunction in diabetes. CRC Press, Boca Raton, 1988, pp. 245.

    Google Scholar 

  20. Rodrigues, B., Xiang, H. and McNeil, J.H. Effect of L-carnitine treatment on lipid metabolism and cardaic performance in chronically diabetic rats. Diabetes 37: 1358–1364, 1988.

    Article  PubMed  CAS  Google Scholar 

  21. Kenno, K.A. and Severson, D.L. Lipolysis in isolated myocardial cells from diabetic rat hearts. Am. J. Physiol. 249: H1024 - H1030, 1985.

    PubMed  CAS  Google Scholar 

  22. Kenno, K.A. and Severson, D.L. Lipolysis in isolated myocardial cells from diabetic rat hearts. Am. J. Physiol. 249: H1024 - H1030, 1985.

    PubMed  CAS  Google Scholar 

  23. Liedtke, A.J., DeMaison, L. and Nellis, S.H. Effects of L-propionylcarnitine on mechanical recovery during reflow in intact hearts. Am. J. Physiol. 255: H169 - H176, 1988.

    PubMed  CAS  Google Scholar 

  24. Ferrari, R., Ciampalini, G., Agnoletti, G., Cargnoni, A., Ceconi, C. and Visioli, O. Effect of L-carnitine derivatives on heart mitochondrial damage induced by lipid peroxidation. Pharmacol. Res. Commun. 20: 125132, 1988.

    Google Scholar 

  25. Ferrari, R., Ciampalini, G., Agnoletti, G., Cargnoni, A., Ceconi, C. and Visioli, O. Effect of L-carnitine derivatives on heart mitochondrial damage induced by lipid peroxidation. Pharmacol. Res. Commun. 20: 125132, 1988.

    Google Scholar 

  26. Makino, N., Dhalla, K.S., Elimban, V. and Dhalla, N.S. Sarcolemmal Ca2+ transport in streptozotocin-induced diabetic cardiomyopathy in rats. Am. J. Physiol. 253: E202 - E207, 1987.

    PubMed  CAS  Google Scholar 

  27. Ganguly, P.K., Pierce, G.N., Dhalla, K.S. and Dhalla, N.S. Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am. J. Physiol. 244: E528–E535, 1984.

    Google Scholar 

  28. Dhalla, N.S., Anand-Srivastava, M.B., Tuana, B.S. and Khandelwal, R.L. Solubilization of a calcium dependent adenonine triphosphatase from rat heart sarcolemma. J. Mol. Cell. Cardiol. 13: 413–423, 1981.

    Article  CAS  Google Scholar 

  29. Pitts, B.J.R. Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles. J. Biol. Chem. 254: 6232–6235, 1979.

    PubMed  CAS  Google Scholar 

  30. Sulakhe, P.V. and Dhalla, N.S. Excitation-contraction coupling in heart. VII. Calcium accumulation in subcellular particles in congestive heart failure. J. Clin. Invest. 50: 1019–1027, 1971.

    Article  PubMed  CAS  Google Scholar 

  31. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275, 1951.

    PubMed  CAS  Google Scholar 

  32. Panagia, V., Taira, Y. and Dhalla, N.S. Membrane Ca2+ pump and phospholipid methylation activities in diabetic cardiomyopathy. FASEB J. 3: A984, 4403, 1989 (abstract).

    Google Scholar 

  33. Gupta, M.P., Panagia, V. and Dhalla, N.S. Phospholipid N-methylationdependent alterations of cardiac contractile function by L-methionine. J. Pharmacol. Exp. Ther. 245: 664–672, 1988.

    PubMed  CAS  Google Scholar 

  34. Whitmer, J.T. L-carnitine treatment improves cardiac performance and restores high-energy phosphate pools in cardiomyopathic Syrian hamster. Circ. Res. 61: 396–408, 1987.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Borivoj Korecky Naranjan S. Dhalla

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ou, C., Majumder, S., Dai, J., Panagia, V., Dhalla, N.S., Ferrari, R. (1990). Cardiac Phosphatidylethanolamine N-Methylation in Normal and Diabetic Rats Treated with L-Propionylcarnitine. In: Korecky, B., Dhalla, N.S. (eds) Subcellular Basis of Contractile Failure. Developments in Cardiovascular Medicine, vol 116. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1513-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1513-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8813-8

  • Online ISBN: 978-1-4613-1513-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics