Skip to main content

Membrane Abnormalities and Changes in Cardiac Cations due to Alterations in Thyroid Status

  • Chapter
Book cover Subcellular Basis of Contractile Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 116))

Abstract

Thyroid hormones have been shown to induce marked changes in the cardiovascular system (1–4); however, the mechanism of cardiac alterations due to changes in thyroid status over a prolonged period are poorly understood. Since sarcolemmal Na+-K+ ATPase is known to serve as a pump for maintenance of the intracellular concentrations of Na+ and K+ in the myocardial cell (5–7), changes in the activity of this enzyme can be seen to alter the cation composition of the myocardium and thus may lead to changes in the contractile activity. Previous studies have revealed that changes in the plasma levels of thyroid hormones exert a dramatic effect on the myocardial Na+-K+ ATPase activity (8–11). While some investigators have attempted to correlate thyroid hormone induced changes in cardiac Na+-K+ ATPase with alterations in the Na+ and K+ contents (9,12,13), the results are conflicting. Furthermore, very little information concerning changes in myocardial Ca2+ and Mg2+ or plasma electrolytes due to alterations in thyroid status of the animal is available in the literature. This study was therefore undertaken to investigate serum and cardiac electrolytes in euthyroid, hyperthyroid and hypothyroid animals. Experiments were also carried out to examine if the electrolyte changes due to hypothyroidism were reversible upon injecting the animals with thyroid hormone. The sarcolemmal Na+-K+ ATPase activity in euthyroid, hyperthyroid and hypothyroid hearts was monitored to seek relationship with changes in cardiac cation contents under these conditions. Furthermore, in view of varying degree of alterations in the Ca2+-transport activities of the cardiac sarcoplasmic reticulum from hypothyroid and hyperthyroid animals (14–18), it was considered worthwhile to study changes in the sarcoplasmic reticular function by employing heart homogenates from the control and experimental animals. It should be pointed out that these experiments with heart homogenate will not only rule out the possibility of artifacts due to the procedure for isolation of the sarcoplasmic reticulum but will also help in identifying the specificity of membrane changes upon altering the thyroid status in animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bucciono, RA, Spann, JR, Jr, Pool, PE, Sonneblick, EH and Braunwald, E. Influence of the thyroid state on the intrinsic contractile properties and energy stores of the myocardium. J. Clin. Invest. 46: 1669–1682, 1967.

    Article  Google Scholar 

  2. Strauer, BE and Schulze, W. Experimental hypothyroidism: Depression of myocardial contractile function and hemodynamics and their reversibility by substitution with thyroid hormones. Basic Res. Cardiol. 71: 624–644, 1976.

    Article  PubMed  CAS  Google Scholar 

  3. McCallister, LP and Page, E. Effects of thyroxine on untrastructure of rat myocardial cells: A stereological study. J. Ultrastruct. Res. 42: 136–155, 1973.

    Article  PubMed  CAS  Google Scholar 

  4. Symons, C. Thyroid heart disease. Brit. Heart J. 41: 257–262, 1979.

    Article  PubMed  CAS  Google Scholar 

  5. Bonting, SL. Sodium-potassium activated adenosinetriphosphatase and cation transport. Membrane and Ion Transport 1: 257–363, 1970.

    CAS  Google Scholar 

  6. Dhalla, NS, Zigelhoffer, A and Harrow, JAC. Regulatory role of membrane systems in heart function. Can. J. Physiol. Pharmacol. 55: 1211–1234, 1977.

    Article  CAS  Google Scholar 

  7. Dhalla, NS, Das, PK and Sharma, GP. Subcellular basis of cardiac contractile failure. J. Mol. Cell. Cardiol. 10: 363–385, 1978.

    Article  CAS  Google Scholar 

  8. Philipson, KD and Edelman, IS. Thyroid hormone control of Na+-K+ ATPase and K+ dependent phosphatase in the rat heart. Am. J. Physiol. 232: C196–C201, 1977.

    PubMed  CAS  Google Scholar 

  9. Philipson, KD and Edelman, IS. Characteristics of thyroid-stimulated Na+-K+ ATPase of rat heart. Am. J. Physiol. 232: C202–C206, 1977.

    PubMed  CAS  Google Scholar 

  10. Shimada, K and Yazaki, Y. The effect of thyroxine on (Na+-K+)ATPase from the heart and kidney of rabbit. Jap. Heart J. 19: 754–761, 1978.

    Article  PubMed  CAS  Google Scholar 

  11. Daly, MJ and Dhalla, NS. Sarcolemmal Na+-K+ ATPase activity in hypothyroid rat heart. J. Appl. Cardiol. 2: 105–119, 1987.

    CAS  Google Scholar 

  12. Polineni, PI. Cardiac electrolytes and water in thyroparathyroidectomized rats. J. Mol. Cell Cardiol. 6: 531–541, 1974.

    Article  Google Scholar 

  13. Curfman, GD, Crowley, TJ and Smith, TW. Thyroid induced alteratins in myocardial sodium-and potassium-activated adenosine triphosphatase, monovalent catin active transport and cardiac glycoside binding. J. Clin. Invest. 59: 586–590, 1977.

    Article  PubMed  CAS  Google Scholar 

  14. Black, SC, McNiell, JH and Katz, S. Sarcoplasmic reticulum Ca2+ transport and long chain acylcarnitines in hyperthyroidism. Can. J. Physiol. Pharmacol. 66: 159–165, 1988.

    Article  PubMed  CAS  Google Scholar 

  15. Conway, G, Heazligh, RA, Fowler, ND, Gabel, M and Green, S. The effect of hyperthyroidism on the sarcoplasmic reticulum and myosin ATPase of dog heart. J. Mol. Cell. Cardiol. 8: 39–51, 1976.

    Article  PubMed  CAS  Google Scholar 

  16. Limas, CJ. Calcium transport ATPase of cardiac sarcoplasmic reticulum in experimental hyperthyroidism. Am. J. Physiol. 235: H745–H751, 1978.

    PubMed  CAS  Google Scholar 

  17. Suko, J. The calcium pump of cardiac sarcoplasmic reticulum. Functional alterations at different levels of thyroid state in rabbits. J. Physiol. 228: 563–582, 1973.

    PubMed  CAS  Google Scholar 

  18. Takacs, IE, Nosztray, K, Szabo, J, Szentmiklos, AJ, Cseppento, A and Szegi, J. Alterations of contractility and sarcoplasmic reticulum function of rat heart in experimental hypo-and hyperthyroidism. Gen. Physiol. Biophys. 4: 271–278, 1985.

    PubMed  CAS  Google Scholar 

  19. Chicaza, K, Kato, Y, Ohgo, S, Iwaski, K, Miyamoto, Y and Imura, H. Effect of hyperthyroidism and hypothyroidism on rat growth hormone related by thyrotoropin-releasing hormone. Endocrinology 98: 1396 1400, 1976.

    Google Scholar 

  20. Solaro, RJ and Briggs, FN. Estimating the functional capabilities of sarcoplasmic reticulum in cardiac muscle. Circ. Res. 34: 531–540, 1974.

    PubMed  CAS  Google Scholar 

  21. Lowry, OH, Rosenbrough, NJ and Farr, AL. Protein measurement with Folin reagent. J. Biol. Chem. 193: 265–275, 1951.

    PubMed  CAS  Google Scholar 

  22. Kaneko, M, Beamish, RE and Dhalla, NS. Depresson of heart sarcolemmal Ca2+-pump activity by oxygen free radicals. Am. J. Physiol. 256: H368–H374, 1989.

    PubMed  CAS  Google Scholar 

  23. Taussky, HH and Shorr, E. A microcolorimetric method for the determination of inorganic phosphorus. J. Biol. Chem. 202: 675–685, 1953.

    PubMed  CAS  Google Scholar 

  24. Abraham, AS, Shaoul, R, Shimonovitz, S, Eylath, U and Weinstein, M. Serum magnesium levels in acute medical and surgical conditions. Biochem. Med. 24: 21–26, 1980.

    Article  PubMed  CAS  Google Scholar 

  25. Seppet, EK and Dhalla, NS. Characteristics of Ca2+-stimulated ATPase in rat heart sarcolemma in the presence of dithiothreitol and alamethicin. Mol. Cell. Biochem. 91: 137–147, 1989.

    Article  PubMed  CAS  Google Scholar 

  26. Bonnafous, JC, Dornand, J and Mani, JC. Detergent-like effects of alamethicin on lymphocyte plasma membranes. Biochem. Biophys. Res. Commun. 86: 536–544, 1979.

    Article  PubMed  CAS  Google Scholar 

  27. Sestoft, L. Metabolic aspects of the calorigenic effects of thyroid hormone in mammals. Clin. Endocrinol. 13: 489–506, 1980.

    Article  CAS  Google Scholar 

  28. Isamail-Beigi, F and Edelman, IS. Effects of thyroid status on electrolyte distribution of rat tissues. Am. J. Physiol. 225: 1172 1177, 1973.

    Google Scholar 

  29. Morad, M. Physiological implications of K accumulation in heart muscle. Fed. Proc. 39: 1533–1539, 1980.

    PubMed  CAS  Google Scholar 

  30. Morad, M and Maylie, J. Calcium and cardiac electrophysiology. Some experimental considerations. Chest 78: 166S–173S, 1980.

    Google Scholar 

  31. Daly, MJ, Dzurba, A, Tuana, BS and Dhalla, NS. Sarcolemmal Ca2+ binding and enzyme activities in myocardium from hypothyroid rat. Can. J. Cardiol. 2: 356–361, 1986.

    PubMed  CAS  Google Scholar 

  32. Dhalla, NS and Zhao, D. Possible role of sarcolemmal Ca2+/Mg2+ ATPase in heart function. Mag. Res. 2: 161–172, 1989.

    CAS  Google Scholar 

  33. Kerrick, WG and Donaldson, SKB. The effect of Mg2+ on submaximal Ca2+-activated tension in skinned fibers of frog skeletal muscle. Biochim. Biophys. Acta. 275: 117–122, 1972.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Borivoj Korecky Naranjan S. Dhalla

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Daly, M.J., Seppet, E.K., Vetter, R., Dhalla, N.S. (1990). Membrane Abnormalities and Changes in Cardiac Cations due to Alterations in Thyroid Status. In: Korecky, B., Dhalla, N.S. (eds) Subcellular Basis of Contractile Failure. Developments in Cardiovascular Medicine, vol 116. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1513-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1513-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8813-8

  • Online ISBN: 978-1-4613-1513-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics