Skip to main content

Molecular and Subcellular Mechanisms of Thyroid Hormone Induced Cardiac Alterations

  • Chapter
Subcellular Basis of Contractile Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 116))

  • 18 Accesses

Abstract

The cardiovascular effects of excess thyroid hormone were first described by Parry 200 years ago (1), and the effects of thyroid deficiency have similarly been long recognized (2). Since the cardiac effects of thyroid hormone excess and deficiency are prominent, considerable research has focused on the mechanism by which thyroid hormone induces these changes. A number of reviews have been published which summarize the clinical and experimental literature regarding thyroid hormone effects on the heart (3–5). The intent of this chapter is to present the principal areas of investigation concerned with the effects of thyroid hormone action on the heart. Clinical and experimental consequences of thyroid disease on the heart are briefly presented, followed by a review of molecular and subcellular effects of thyroid hormone. Research directed towards understanding the effects of thyroid hormone on these latter two aspects of the heart has led to considerable insight into mechanisms responsible for the behavior of the heart in thyroid disease. Throughout this chapter the hormones of the thyroid gland, 3,5,3’,5’-tetraiodothyronine (thyroxine) and 3,5,3’-triiodothyronine, will be referred to as T4 and T3, respectively, or nondistinctively as thyroid hormone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parry, CH. Collections from Unpublished Medical Writings of Caleb Hillier iParry (vol. 2). London, Underwood, 1825, p. 111

    Google Scholar 

  2. Zondek, H. Das Myxodermherz. Med. Wocheschr. 65: 1180, 1918

    Google Scholar 

  3. Skelton, C.L. The heart and hyperthyroidism. New Eng. J. Med. 307: 1206–1208, 1982

    Article  PubMed  CAS  Google Scholar 

  4. Morkin, E., Flink, I.L. and Goldman, S. Biochemical and physiologic effects of thyroid hormone on cardiac performance. Prog. Cardiovasc. Res. 25: 435–464, 1983

    Article  CAS  Google Scholar 

  5. Iskandrian, A.S., Hakki, A-H. and Mattleman, S. Cardiac function in hyperthyroidism. Clin. Cardiol. 7: 171–174, 1984

    Article  PubMed  CAS  Google Scholar 

  6. Skelton, C.L. and Sonnenblick, E.H. Heterogeneity of contractile function in cardiac hypertrophy. Circ. Res (Suppl II), 83–96, 1974

    Google Scholar 

  7. Sandler, G. and Wilson, G. Nature and prognosis of heart disease in thyrotoxicosis: A review of 150 patients treated with I. Q. J. Med. 28: 347–51, 1959

    CAS  Google Scholar 

  8. Forfar, J.C., Muir, Al., Sawers, S.A. and Toft, A.D. Abnormal left ventricular function in hyperthyroidism: Evidence for a possible reversible cardiomyopathy. New Eng. J. Med. 307: 1165–170, 1982

    Article  PubMed  CAS  Google Scholar 

  9. Forfar, J.C., Matthews, D.M. and Toft, A.D. Delayed recovery of left ventricular function after antithyroid treatment: Further evidence for reversible abnormalities of contractility in hyperthyroidism. Br. Heart J. 52: 215–222, 1984

    Article  PubMed  CAS  Google Scholar 

  10. Werner, S.H. and Braverman, L.E. In. Werner’s The Thyroid: A fundamental and clinical text.Fifth Ed. J.B. Lippincott Co. Philadelphia, 1986, p. 1140.

    Google Scholar 

  11. Burchardt, D., Staub. J.J., Kraenzlin, M. et. al. The systolic time intervals in thyroid dysfunction. Am Heart J. 95: 187–190, 1978

    Article  Google Scholar 

  12. Forfar, J. Muir, A. and Toft, A. Left ventricular function in hypothyroidism. Br. Heart J. 48: 278–282, 1982

    Article  PubMed  CAS  Google Scholar 

  13. Vora, J., O’Malley, B.P., Petersen, S. et. al. Reversible abnormalities of myocardial relaxation in hypothyroidism. J. Clin. Endocrinol. Metab. 61: 269–272, 1985

    Article  PubMed  CAS  Google Scholar 

  14. Streeten, D.H.P., Anderson,Jr., G.H., Howland, T. et.al. Effects of thyroid function on blood pressure: Recognition of hypothyroid hypertension. Hypertension. 11: 78–83, 1988

    PubMed  CAS  Google Scholar 

  15. McConnaughey, M.M., Jones, L.R., Watanabe, A.M. et.al. Thyroxine and propylthiouracil effects on alpha-and beta-adrenergic receptor number, ATPase activities, and sialic acid content of rat cardiac membrane vesicles. J. Cardiovasc. Pharmacol. 1: 609–623, 1979

    Article  PubMed  CAS  Google Scholar 

  16. Ishac, E.J.N. and Pennefather, J.N. The effects of altered thyroid state upon responses mediated by atrial muscarinic receptors in the rat. Br. J. Pharmacol. 79: 451–459, 1983

    PubMed  CAS  Google Scholar 

  17. Simpson, W.W., Rodgers, R.L. and McNeill, J.H. Cardiac responsiveness to alpha and beta adrenergic amines: Effects of carbachol and hypothyroidism. J. Pharmacol. Exp. Ther. 219: 231–234, 1981

    PubMed  CAS  Google Scholar 

  18. MacLeod, K.M. and McNeill, J.H. The influence of altered thyroid hormone levels on guinea pig cardiac adrenoceptors and histamine receptors. Can J. Physiol. Pharmacol.

    Google Scholar 

  19. McNeill, J.H. The effect of triiodothyronine pretreatment on amine-induced rat cardiac phosphorylase activation. J. Pharmacol. Exp. Ther. 161: 40–46, 1968

    PubMed  CAS  Google Scholar 

  20. Takeo, S., Tomomatsu, E. and Sakanashi, M. Changes in cardiac myofibrillar ATPase activity during development of hyperthyroidism in the rabbit. Jpn. Heart J. 25: 113–125, 1984

    Article  PubMed  CAS  Google Scholar 

  21. Buccino, R.A., Spann, J.F., Pool, P.E. et. al. Influence of the thyroid state on the intrinsic contractile properties and energy stores of the myocardium. J. Clin. Invest. 46: 1669–1682, 1967

    Article  PubMed  CAS  Google Scholar 

  22. MacKinnon, R., Gwathmay, J.K., Allen, P.D. et.al. Modulation by the thyroid state of intracellular calcium and contractility in ferret ventricular muscle. Circ. Res. 63: 1080–1089, 1988

    PubMed  CAS  Google Scholar 

  23. Marriott, M.L. and McNeill, J.H. Effect of thyroid hormone treatment on responses of the isolated working rat heart. Can. J. Physiol. Pharmacol. 61: 1382–1390, 1983

    Article  PubMed  CAS  Google Scholar 

  24. Bedotto, J.B., Gay, R.G., Graham, S.D., Morkin, E. and Goldman, S. Cardiac hypertrophy induced by thyroid hormone is independent of loading conditions and Beta adrenoceptor blockade. J. Phamacol. Exp. Ther. 248: 632–636, 1989

    CAS  Google Scholar 

  25. Brooks, I., Flynn, S.B., Owen D.A.A. and Underwood, A.H. Changes in cardiac function following administration of thyroid hormones in thyroidectomized rats: Assessment using the isolated working rat heart preparation. J. Cardiovasc. Pharmacol. 7: 290–296, 1985

    Article  PubMed  CAS  Google Scholar 

  26. Rutherford, J.D., Vatner, S.F. and Braunwald, E. Adrenergic control of myocardial contractility in conscious hyperthyroid dogs. Am. J. Physiol. 237: H590 - H596, 1979

    PubMed  CAS  Google Scholar 

  27. Hammond, H.K., White, F.C. Buxton, I.L.O. et. al. Increased myocardial beta-receptors and adrenergic responses in hyperthyroid pigs. Am. J. Physiol. 252: H283 - H290, 1987

    PubMed  CAS  Google Scholar 

  28. Lompre, A-M., Nadal-Ginard, B. and Mandavi, V. Expression of the cardiac ventricular alpha-and beta-myosin heavy chain is developmentally and hormonally regulated. J. Biol. Chem. 259: 6437–6446, 1984

    PubMed  CAS  Google Scholar 

  29. Schwartz, K., Lecarpentier, Y., Martin, J.L. et.al. Myosin isoenzymic distribution correlates with speed of myocardial contraction. J. Mol. Cell. Cardiol. 13: 1071–1075, 1981

    Article  PubMed  CAS  Google Scholar 

  30. Hoh, J.F.Y., McGrath, P.A. and Hale, H.T. Electrophoretic analysis of multiple forms of rat cardiac myosin: effect of hypophysectomy and thyroxine replacement. J. Mol. Cell. Cardiol. 10: 1053–1076, 1978

    Article  PubMed  CAS  Google Scholar 

  31. Flink, I.L., Rader, J.H. and Morkin, E. Thyroid hormone stimulates synthesis of a cardiac myosin isoenzyme. J. Biol. Chem. 254: 3105–3119, 1979

    PubMed  CAS  Google Scholar 

  32. Gustafson, T.A., Markham, B.E. and Morkin, E. Effects of thyroid hormone on alpha-actin and myosin heavy chain gene expression in cardiac and skeletal muscles of the rat: Measurement of mRNA content using synthetic oligonucleotide probes. Circ. Res. 59: 194–201, 1986

    PubMed  CAS  Google Scholar 

  33. Gustafson, T.A., Bahl, J.J., Markham, B.E. et.al. Hormonal regulation of myosin heavy chain and alpha-actin gene expression in cultured fetal rat heart myocytes. J. Biol. Chem. 262: 13,316 - 13,322, 1987

    PubMed  CAS  Google Scholar 

  34. Yaffe, B.M. and Samuels, H.H. Hormonal regulation of the growth hormone gene. J. Biol. Chem. 259: 6284, 1984

    PubMed  CAS  Google Scholar 

  35. Butler-Browne, G.S., Pruliere, G., Cambon, N. and Whalen, R.G. Influence of the dwarf mouse mutation on skeletal and cardiac myosin isoforms. J. Biol. Chem. 262: 15188–15193, 1987

    PubMed  CAS  Google Scholar 

  36. Klein, I and Hong, C. Effects of thyroid hormone on cardiac size and myosin content of the heterotopically transplanted heart. J. Clin. Invest. 77: 1694–1698, 1986

    Article  PubMed  CAS  Google Scholar 

  37. Korecky, B., Zak, R.,Schwartz, K. and Aschenbrenner, V. Role of thyroid hormone in regulation of isomyosin composition, contractility, and size of heterotopically isotransplanted rat heart. Circ. Res. 60: 824–830, 1987

    PubMed  CAS  Google Scholar 

  38. Tada, M., Yamamoto, T. and Tonomura, Y. Molecular mechanism of active calcium transport by sarcoplasmic reticulum. Physiol. Rev. 58: 1–79, 1978

    PubMed  CAS  Google Scholar 

  39. Suko, J. The calcium pump of sarcoplasmic reticulum. Functional alterations at different levels of thyroid state in rabbits. J. Physiol. 228: 563–582, 1973

    PubMed  CAS  Google Scholar 

  40. Limas, C.J. Calcium transport ATPase of cardiac sarcoplasmic reticulum in experimental hyperthyroidism. Am. J. Physiol. 235: H745 - H751, 1978

    PubMed  CAS  Google Scholar 

  41. Takacs, I.E., Szabo, J., Nosztray, K. et. al. Alterations in contractility and sarcoplasmic reticulum function in rat heart in experimental hypo-and hyperthyroidism. Gen. Physiol. 4: 271–278, 1985

    CAS  Google Scholar 

  42. Black, S.C., McNeill, J.H. and Katz, S. Sarcoplasmic reticulum Cat+ transport and long chain acyl carnitines in hyperthyroidism. Can. J. Physiol. Pharmacol. 66: 159–165, 1988

    Article  PubMed  CAS  Google Scholar 

  43. McCallister, L.P. and Page, E. Effects of thyroxin on ultrastructure of rat myocardial cells: A stereological study. J. Ultrastructural Res. 42: 136–155, 1973

    Article  CAS  Google Scholar 

  44. Rohrer, D. and Dillmann W.H. Thyroid hormone markedly increases the mRNA coding for sarcoplasmic reticulum Ca2+-ATPase in the rat heart. J. Biol. Chem. 263: 6941–6944, 1988

    PubMed  CAS  Google Scholar 

  45. Sirlonides, W.S. and van Hardeveld, C. The postnatal development of sarcoplasmic reticulum Ca + transport activity in skeletal muscle of the rat is critically dependent on thyroid hormone. Endocrinology. 124: 1145–1153, 1989

    Article  Google Scholar 

  46. Limas, C.J. Enhanced phosphorylation of myocardial sarcoplasmic reticulum in experimental hyperthyroidism. Am. J. Physiol. H426 - H431, 1978

    Google Scholar 

  47. Guarnieri, T., Filburn, C.R., Beard, E.S. and Lakatta, E.G. Enhanced contractile response and protein kinase activation to threshold levels of beta-adrenergic stimulation in hyperthyroid rat heart. J. Clin Invest. 65: 861–868, 1980

    Article  PubMed  CAS  Google Scholar 

  48. Faas, F.H. and Carter, W.J. Fatty acid desaturation and microsomal lipid fatty acid composition in experimental hypothyroidism. Biochem. J. 207: 29–35, 1982

    PubMed  CAS  Google Scholar 

  49. Stubbs, C.D. and Smith, A.D. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochem. Biophys. Acta. 779: 89137, 1984

    Google Scholar 

  50. Pitts, B.J.R., Tate, C.A., Van Winkle, B. et. al. Palmitoylcarnitine inhibition of the calcium pump in sarcoplasmic reticulum: a possible role in myocardial ischemia. Life Sci. 23: 391–402, 1978

    Article  PubMed  CAS  Google Scholar 

  51. Galo, M.G., Unates, L.E. and Fazas, R.N, Effect of membrane fatty acid composition on the action of thyroid hormones on (Ca 2++Mg2+)-adenosine triphosphatase from rat erythrocyte. J. Biol. Chem. 256: 7113–7114, 1981

    PubMed  CAS  Google Scholar 

  52. Rupiinger, A., Mylotte, KM., Davis, P.J., Davis F.B. and Blas, S.D. Rabbit myocardial membrane Ca2+-adenosine triphosphatase activity: Stimulation in vitro by thyroid hormone. Arch. Biochem. Biophys. 229: 379–385, 1984

    Article  Google Scholar 

  53. Segal, J. Adrenergic inhibition of the stimulatory effect of 3,5,3’-triiodothyronine on calcium accumulation and cytoplasmic free calcium concentration in rat thymocytes. Further evidence in support of the concept that calcium serves as the first messenger for the prompt action of thyroid hormone. Endocrinology. 122: 2240–2246, 1988

    Article  PubMed  CAS  Google Scholar 

  54. Segal, J., Hardiman, J. and Ingbar, S.H. Stimulation of calcium-ATPase activity by 3,5,3’triiodothyronine in rat thymocyte plasma membranes. Biochem. J. 261: 749–754, 1989

    PubMed  CAS  Google Scholar 

  55. Coulumbe, P., Dussault, J.H. and Walker, P. Plasma catecholamine concentrations in hypothyroidism and hyperthyroidism. Metabolism. 25: 973–979, 1976

    Article  Google Scholar 

  56. Bayliss, R.I.S. and Edwards, O.M. Urinary excretion of free catecholamines in Gravé s disease. Endocrinology. 49: 167–173, 1971

    Article  CAS  Google Scholar 

  57. Bilezikian, J.P. and Loeb, J.N. The influence of hyperthyroidism and hypothyroidism on alpha-and beta-adrenergic receptor systems and adrenergic responsiveness. Endocrine Rev. 4: 378–388, 1983

    Article  CAS  Google Scholar 

  58. Benfey, B.G. and Varma, D.R. Cardiac and vascular effects of sympathomimetic drugs after administration of tri-iodothyronine and reserpine. Br. J. Pharmacol. 21: 174–181, 1963

    CAS  Google Scholar 

  59. Margolius, H.S. and Gaffney, T.E. The effects of injected norepinephrine and sympathetic nerve stimulation in hypothyroid and hyperthyroid dogs. J. Pharmacol. Exp. Ther. 149: 329–335, 1965

    PubMed  CAS  Google Scholar 

  60. van der Schoot, J.B. and Moran, N.C. An experimental evaluation of the reported influence of thyroxine on the cardiovascular effects of catecholamines. J. Pharamacol. Exp. Ther. 149: 336–345, 1965

    Google Scholar 

  61. Fox, A.W., Juberg, E.N., May, J.M. et.al. Thyroid status and adrenergic receptor subtypes in the rat: Comparison of receptor density and responsiveness. J. Pharmacol. Exp. Ther. 235: 715–723, 1985

    PubMed  CAS  Google Scholar 

  62. Handberg, G.M. Influence of altered thyroid state on the inotropic potency of isoproterenolStudies with isolated rat left atria paced at different frequencies. J. Cardiovasc. Pharmacol. 6: 943–948, 1984

    Article  PubMed  CAS  Google Scholar 

  63. Hornbrook, K.R. and Cabral, A. Enhancement by thyroid hormone treatment of norepinephrineinduced phosphorylase activation in the rat heart. Biochem. Pharmacol. 21: 897–907, 1972

    Article  PubMed  CAS  Google Scholar 

  64. Young, B.A. and McNeill, J.H. The effect of noradrenaline and tyramine on cardiac contractility, cyclic AMP and phosphorylase a in normal and hyperthyroid rats. Can. J. Physiol. Pharmacol. 52: 373–383, 1974

    Article  Google Scholar 

  65. Werth, D.K., Watanabe, A.M. and Hathaway, D.R. Mechanisms of enhanced phosphorylase activation in the hyperthyroid rat heart. J. Mol. Cell. Cardiol. 15: 163–171, 1983

    Article  PubMed  CAS  Google Scholar 

  66. Tse, J., Wrenn, R.W. and Kuo, J.F. Thyroxine-induced changes in characteristics and activities of beta-adrenergic receptors and adenosine 3’5’-monophosphate and guanosine 3’5’-monophosphate systems in the heart may be related to reputed catecholamine supersensitivity in hyperthyroidism. Endocrinology. 107: 6–13, 1980

    Article  PubMed  CAS  Google Scholar 

  67. McNeill, J.H., Muschek, L.D. and Brody, T.M. The effect of triiodothyronine on cyclic AMP, phosphorylase and adenylcyclase in rat heart. Can. J. Physiol. Pharmacol. 47: 913–916, 1969

    Article  PubMed  CAS  Google Scholar 

  68. Ishac, E.J.N., Pennefather, J.N. and Handberg, G.M. Effect of changes in thyroid state on atrial alpha-and beta-adrenoceptors, adenylate cyclase activity, and catecholamine levels in the rat. J. Cardiovasc. Pharmacol. 5: 396–405, 1983

    Article  PubMed  CAS  Google Scholar 

  69. McNeill, J.H., LaRochelle, D.F. and Muschek, L.D. Theophylline potentiation of norepinephrine activated phosphorylase in normal and hyperthyroid rats. Arch. Int. Pharmacodyn. 193: 92–101, 1971

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Borivoj Korecky Naranjan S. Dhalla

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Black, S.C., McNeill, J.H. (1990). Molecular and Subcellular Mechanisms of Thyroid Hormone Induced Cardiac Alterations. In: Korecky, B., Dhalla, N.S. (eds) Subcellular Basis of Contractile Failure. Developments in Cardiovascular Medicine, vol 116. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1513-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1513-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8813-8

  • Online ISBN: 978-1-4613-1513-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics