Skip to main content

Tumors of the Central Nervous System in Children

  • Chapter

Part of the book series: Foundations of Neurological Surgery ((FONS,volume 3))

Abstract

In children, primary tumors of the brain are the most common solid neoplasms and are surpassed in frequency only by leukemia [1, 2]. The incidence, location, and natural history of brain tumors in children differ considerably from those in adults. There are significant contrasts between the two age groups in clinical symptomatology as well as temporal progression and outcome for particular tumors. These differences extend to other areas such as tumor morphology and pathology.

The erratum of this chapter is available at http://dx.doi.org/10.1007/978-1-4613-1501-8_25

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pearson D, Steward JK: Malignant disease in juveniles. Proc R Soc Med 62:685–688, 1969.

    PubMed  CAS  Google Scholar 

  2. Young JL Jr, Miller RW: Incidence of malignant tumors in U.S. children. J Pediatr 86:254–258, 1975.

    Article  PubMed  Google Scholar 

  3. Segall HD, Batnitzky S, Zee C-S, Ahmadi J, Bird CR, Cohen ME: Computed tomography in the diagnosis of intracranial neoplasms in children. Cancer 56:1748–1755, 1985.

    Article  PubMed  CAS  Google Scholar 

  4. Packer RJ, Batnitzky S, Cohen ME: Magnetic resonance imaging in the evaluation of intracranial tumors of childhood. Cancer 56: 1767–1772, 1985.

    Article  PubMed  CAS  Google Scholar 

  5. Vásquez-López E: On the growth of Rous sarcoma inoculated into the brain. Am J Cancer 26:29–55, 1936.

    Google Scholar 

  6. Zimmerman HM, Arnold H: Experimental brain tumors. I. Tumors produced by methylcholanthrene. Cancer Res 1:919–938, 1941.

    CAS  Google Scholar 

  7. Greene HSN: The transplantation of human brain tumors to the brains of laboratory animals. Cancer Res 13:422–426, 1953.

    PubMed  CAS  Google Scholar 

  8. Rabotti GF, Grove AS Jr, Sellers RL, Anderson WR: Induction of multiple brain tumors (gliomata and leptomeningeal sarcomata) in dogs by Rous sacoma virus. Nature 209:884–886, 1966.

    Article  PubMed  CAS  Google Scholar 

  9. Swenberg JA, Koestner A, Wechsler W, Denlinger RH: Quantitative aspects of transplacental tumor induction with ethylnitrosourea in rats. Cancer Res 32:2656–2660, 1972.

    PubMed  CAS  Google Scholar 

  10. Swenberg JA: Chemical induction of brain tumors. Adv Neurol 15:85–99, 1976.

    PubMed  CAS  Google Scholar 

  11. Swenberg JA: Chemical- and virus-induced brain tumors. Natl Cancer Inst Monogr 46: 3–10, 1977.

    PubMed  CAS  Google Scholar 

  12. Crafts D, Wilson CB: Animal models of brain tumors. Natl Cancer Inst Monogr 46:11–17, 1977.

    PubMed  CAS  Google Scholar 

  13. Rubenstein LJ: Correlation of animal brain tumor models with human neuro-oncology. Natl Cancer Inst Monogr 46:43–49, 1977.

    Google Scholar 

  14. Groothuis DG, Fischer JM, Lapin G, Bigner DD, Vick NA: Permeability of different experimental brain tumor models to horseradish peroxidase. J Neuropathol Exp Neurol 41:164–185, 1982.

    Article  PubMed  CAS  Google Scholar 

  15. Mandybur TI, Alvira MM: Ultrastructural findings in so-called ependymal rat tumors induced by transplacental administration of ethylnitrosourea (ENU). Acta Neuropathol (Berl) 57:51–58, 1982.

    Article  CAS  Google Scholar 

  16. Bressler JP, Cole R, de Vellis J: Neoplastic transformation of newborn rat oligodendrocytes in culture. Cancer Res 43:709–715, 1983.

    PubMed  CAS  Google Scholar 

  17. Ikeda T, Matsuo T, Kohno S, Tashiro T, Maeda H: Early stage of development of transplacentally induced glioma with ethylnitrosourea in rats. Sequential historadioautographic and electron microscopic studies. Acta Pathol Jpn 33:237–247, 1983.

    PubMed  CAS  Google Scholar 

  18. Rosenblum ML, Vasquez DA, Hoshino T, Wilson CB: Development of a clonogenic cell assay for human brain tumors. Cancer 41:2305–2314, 1978.

    Article  PubMed  CAS  Google Scholar 

  19. Bigner DD, Bigner SH, Ponten J, Westermark B, Mahaley MS Jr, Ruoslahti E, Herschman H, Eng LF, Wikstrand CJ: Heterogeneity of genotypic and phenotypic characteristics of fifteen permanent cell lines derived from human gliomas. J Neuropathol Exp Neurol 40:201–229, 1981.

    Article  PubMed  CAS  Google Scholar 

  20. Bigner SH, Bullard DE, Pegram CN, Wikstrand CJ, Bigner DD: Relationship of in vitro morphologic and growth characteristics of established human glioma-derived cell lines to their tumorigenicity in athymic nude mice. J Neuropathol Exp Neurol 40:390–409, 1981.

    Article  PubMed  CAS  Google Scholar 

  21. Hamburger AW: Use of in vitro tests in predictive cancer chemotherapy. J Natl Cancer Inst 66:981–988, 1981.

    PubMed  CAS  Google Scholar 

  22. Morgan D, Freshney RI, Darling JL, Thomas DG, Celik F: Assay of anticancer drugs in tissue culture: cell cultures of biopsies from human astrocytoma. Br J Cancer 47:205–214, 1983.

    Article  PubMed  CAS  Google Scholar 

  23. Rosenblum ML, Gerosa MA, Wilson CB, Barger GR, Pertuiset BF, de Tribolet N, Dougherty DV: Stem cell studies of human malignant brain tumors. Part 1: Development of the stem cell assay and its potential. J Neurosurg 58:170–176, 1983.

    Article  PubMed  CAS  Google Scholar 

  24. Pertuiset B, Dougherty D, Cromeyer C, Hoshino T, Berger M, Rosenblum ML: Stem cell studies of human malignant brain tumors. Part 2: Proliferation kinetics of brain-tumor cells in vitro in early-passage cultures. J Neurosurg 63:426–432, 1985.

    Article  PubMed  CAS  Google Scholar 

  25. Rahman M, Yeger H, Becker LE: In vivo and in vitro characterization of a human cell line derived from an ependymoma. Lab Invest 54:7p (abstract), 1986.

    Google Scholar 

  26. Zülch KJ: Histological Typing of Tumours of the Central Nervous System. Geneva: World Health Organization, 1979.

    Google Scholar 

  27. Rorke LB, Gilles FH, Davis RL, Becker LE: Revision of the World Health Organization classification of brain tumors for childhood brain tumors. Cancer 56:1869–1886, 1985.

    Article  PubMed  CAS  Google Scholar 

  28. Becker LE, Halliday WC: Central nervous system tumors of childhood. Perspect Pediatr Pathol 10:86–134, 1987.

    PubMed  CAS  Google Scholar 

  29. Miller RH, Craig WMcK, Kernohan JW: Supratentorial tumors among children. Arch Neurol Psychiatry 18:797–814, 1952.

    Google Scholar 

  30. Low NL, Correll JW, Hammill JF: Tumors of the cerebral hemispheres in children. Arch Neurol 13:547–554, 1965.

    PubMed  CAS  Google Scholar 

  31. Hoffman HJ: Supratentorial brain tumors in children. In Youmans JR (ed), Neurological Surgery, second edition. Philadelphia: Saunders, pp 2702–2732.

    Google Scholar 

  32. Humphreys RP: Posterior cranial fossa brain tumors in children. In Youmans JR (ed), Neurological Surgery, second edition. Philadelphia: Saunders, pp 2733–2758.

    Google Scholar 

  33. McMenemey WH: An appraisal of smear-diagnosis in neurosurgery. Am J Clin Pathol 33:471–479, 1960.

    Google Scholar 

  34. Burger PC, Vogel FS: Frozen section interpretation in surgical neuropathology. I. Intracranial lesions. Am J Surg Pathol 1:323–347, 1977.

    Article  Google Scholar 

  35. Burger PC, Vogel FS: Frozen section interpretation in surgical neuropathology. II. Intraspinal lesions. Am J Surg Pathol 2: 81–95, 1978.

    Article  PubMed  CAS  Google Scholar 

  36. Ostertag CB, Mennel HD, Kiessling M: Stereotactic biopsy of brain tumors. Surg Neurol 14:275–283, 1980.

    PubMed  CAS  Google Scholar 

  37. Willems JGMS, Alva-Willems JM: Accuracy of cytologic diagnosis of central nervous system neoplasms in stereotactic biopsies. Acta Cytol (Baltimore) 28:243–249, 1984.

    CAS  Google Scholar 

  38. Burger PC: Use of cytological preparations in the frozen section diagnosis of central nervous system neoplasia. Am J Surg Pathol 9: 344–354, 1985.

    Article  PubMed  CAS  Google Scholar 

  39. Cahill EM, Hidvegi DF: Crush preparations of lesions of the central nervous system. A useful adjunct to the frozen section. Acta Cytol (Baltimore) 29:279–285, 1985.

    CAS  Google Scholar 

  40. Osborn M, Weber K: Biology of disease. Tumor diagnosis by intermediate filament typing: a novel tool for surgical pathology. Lab Invest 48:372–394, 1983.

    PubMed  CAS  Google Scholar 

  41. Fedoroff S, White, R, Neal J, Subrahmanyan L, Kalnins VI: Astrocyte cell lineage. II. Mouse fibrous astrocytes and reactive astrocytes in cultures have vimentin- and GFP-containing intermediate filaments. Dev Brain Res 7:303–315, 1983.

    Article  CAS  Google Scholar 

  42. Hsu S-M, Raine L, Fänger H: Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29: 577–580, 1981.

    Article  PubMed  CAS  Google Scholar 

  43. Hsu S-M, Raine L: Protein A, avidin, and biotin in immunohistochemistry. J Histochem Cytochem 29, 1349–1353, 1981.

    Article  PubMed  CAS  Google Scholar 

  44. Sternberger LA: Immunocytochemistry, third edition. New York: John Wiley and Sons.

    Google Scholar 

  45. Eng LF, Vanderhaeghen JJ, Bignami A, Gerstl B: An acidic protein isolated from fibrous astrocytes. Brain Res 28:351–354, 1971.

    Article  PubMed  CAS  Google Scholar 

  46. Bignami A, Eng LF, Dahl D, Uyeda CT: Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res 43:429–435, 1972.

    Article  PubMed  CAS  Google Scholar 

  47. Deck JH, Eng LF, Bigbee J, Woodcock SM: The role of glial fibrillary acidic protein in the diagnosis of central nervous system tumors. Acta Neuropathol (Berl) 42:183–190, 1978.

    Article  CAS  Google Scholar 

  48. Eng LF, Rubinstein LJ: Contribution of immunohistochemistry to diagnostic problems of human cerebral tumors. J Histochem Cytochem 26:513–522, 1978.

    Article  PubMed  CAS  Google Scholar 

  49. Van der Meulen JDM, Houthoff HJ, Ebels EJ: Glial fibrillary acidic protein in human gliomas. Neuropathol Appl Neurobiol 4: 177–190, 1978.

    Article  PubMed  Google Scholar 

  50. DeArmond SJ, Eng LF, Rubinstein LJ: The application of glial fibrillary acidic (GFA) protein immunohistochemistry in neurooncology. A progress report. Pathol Res Pract 168: 374–394, 1980.

    CAS  Google Scholar 

  51. Velasco ME, Dahl D, Roessman U, Gambetti P: Immunohistochemical localization of glial fibrillary acidic protein in human glial neoplasms. Cancer 45:484–494, 1980.

    Article  PubMed  CAS  Google Scholar 

  52. Meneses ACO, Kepes JJ, Strenberger NH: Astrocytic differentiation of neoplastic oligodendrocytes. J Neuropathol Exp Neurol 41:368 (abstract), 1982.

    Google Scholar 

  53. Eng LF, DeArmond SJ: Immunochemistry of the glial fibrillary acidic protein. Prog Neuropathol 5:19–39, 1983.

    CAS  Google Scholar 

  54. Roessmann U, Velasco ME, Gambetti P, Autilio-Gambetti L: Neuronal and astrocytic differentiation in human neuroepithelial neoplasms. An immunohistochemical study. J Neuropathol Exp Neurol 42:113–121, 1983.

    Article  PubMed  CAS  Google Scholar 

  55. Bonnin JM, Rubinstein LJ: Immunohistochemistry of central nervous system tumors. Its contributions to neurosurgical diagnosis. J Neurosurg 60:1121–1133, 1984.

    Article  PubMed  CAS  Google Scholar 

  56. Herpers MJ, Budka H: Glial fibrillary acidic protein (GFAP) in oligodendroglial tumors: gliofibrillary oligodendroglioma and transitional oligoastrocytoma as subtypes of oligodendroglioma. Acta Neuropathol (Berl) 64: 265–272, 1984.

    Article  CAS  Google Scholar 

  57. Goldman JE, Schaumberg HH, Norton WT: Isolation and characterization of glial filaments from human brain. J Cell Biol 78:426–440, 1978.

    Article  PubMed  CAS  Google Scholar 

  58. Eng LF: The glial fibrillary acidic (GFA) protein. In Bradshaw RA, Schneider DM (eds), Proteins of the Nervous System, second edition. New York: Raven Press, pp 85–117.

    Google Scholar 

  59. Kepes JJ, Rubinstein LJ, Eng LF: Pleomorphic xanthoastrocytoma: a distinctive meningocerebral glioma of young subjects with relatively favorable prognosis. A study of 12 cases. Cancer 44:1839–1852, 1979.

    Article  PubMed  CAS  Google Scholar 

  60. Jagadha V, Halliday WC, Becker LE: Glial fibrillary acidic protein (GFAP) in oligodendrogliomas: a reflection of transient GFAP expression by immature oligodendroglia. Can J Neurol Sci 13:307–311, 1986.

    PubMed  CAS  Google Scholar 

  61. Rubinstein LJ, Brucher JM: Focal ependymal differentiation in choroid plexus papillomas. An immunoperoxidase study. Acta Neuropathol (Berl) 53:29–33, 1981.

    Article  CAS  Google Scholar 

  62. Mannoji H, Takeshita I, Fukui M, Ohta M, Kitamura K: Glial fibrillary acidic protein in medulloblastoma. Acta Neuropathol (Berl) 55:63–69, 1981.

    Article  CAS  Google Scholar 

  63. Taratuto AL, Molina H, Morges J: Choroid plexus tumors in infancy and childhood. Focal ependymal differentiation. Acta Neuropathol (Berl) 59:304–308, 1983.

    Article  CAS  Google Scholar 

  64. Schnitzer J, Franke WW, Schachner M: Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. J Cell Biol 90:435–447, 1981.

    Article  PubMed  CAS  Google Scholar 

  65. Halliday WC, Yeger H, Duwe GF, Phillips MJ: Intermediate filaments in meningiomas. J Neuropathol Exp Neurol 44:617–623, 1985.

    Article  PubMed  CAS  Google Scholar 

  66. Schiffer D, Giordana MT, Mauro A, Migheli A, Germano I, Giaccone G: Immunohistochemical demonstration of vimentin in human cerebral tumors. Acta Neuropathol (Berl) 70:209–219, 1986.

    Article  CAS  Google Scholar 

  67. Zomzely-Neurath CE, Walker WA: Nervous system proteins: 14-3-2 protein, neuron-specific enolase and S-100 protein. In Bradshaw RA, Schneider DM (eds), Proteins of the Nervous System, second edition. New York: Raven Press, pp 1–57.

    Google Scholar 

  68. Isobe T, Tsugita A, Okuyama T: The amino acid sequence and the subunit structure of bovine brain S-100 protein (PAP I-b). J Neurochem 30:921–923, 1978.

    Article  PubMed  CAS  Google Scholar 

  69. Cocchia D, Michetti F, Donato R: Immunochemical and immunocytochemical localization of S-100 antigen in normal human skin. Nature 294:85–87, 1981.

    Article  PubMed  CAS  Google Scholar 

  70. Nakajima T, Watanabe S, Sato Y, Kameya T, Hirota T, Shimosato Y: An immunoperoxidase study of S-100 protein distribution in normal and neoplastic tissues. Am J Surg Pathol 6:715–727, 1982.

    Article  PubMed  CAS  Google Scholar 

  71. Stefansson K, Wollmann RL, Moore BW, Arnason BGW: S-100 protein in human chondrocytes. Nature 295:63–64, 1982.

    Article  PubMed  CAS  Google Scholar 

  72. Nakamura Y, Becker LE, Marks A: Distribution of immunoreactive S-100 protein in pediatric brain tumors. J Neuropathol Exp Neurol 42:136–145, 1983.

    Article  PubMed  CAS  Google Scholar 

  73. Schmechel D, Marangos PJ, Zis AP, Brightman M, Goodwin FK: Brain enolases as specific markers of neuronal and glial cells. Science 199:313–315, 1978.

    Article  PubMed  CAS  Google Scholar 

  74. Hullin DA, Brown K, Kynock PAM, Smith C, Thompson RJ: Purification, radioimmunoassay, and distribution of human brain 14-3-2 protein (nervous-system specific enolase) in human tissues. Biochim Biophys Acta 628:98–108, 1980.

    PubMed  CAS  Google Scholar 

  75. Schmechel D, Marangos PJ, Brightman M: Neurone-specific enolase is a molecular marker for peripheral and central neuroendocrine cells. Nature 276:834–836, 1978.

    Article  PubMed  CAS  Google Scholar 

  76. Dhillon AP, Røde J, Leathern A: Neurone specific enolase: an aid to the diagnosis of melanoma and neuroblastoma. Histopathology 6:81–92, 1982.

    Article  PubMed  CAS  Google Scholar 

  77. Wick MR, Scheithauer BW, Kovacs K: Neuron-specific enolase in neuroendocrine tumors of the thymus, bronchus, and skin. Am J Clin Pathol 79:703–707, 1983.

    PubMed  CAS  Google Scholar 

  78. Vinores SA, Bonnin JM, Rubinstein LJ, Marangos PJ: Immunohistochemical demonstration of neuron-specific enolase in neoplasms of the CNS and other tissues. Arch Pathol Lab Med 108:536–540, 1984.

    PubMed  CAS  Google Scholar 

  79. Dranoff G, Bigner DD: A word of caution in the use of neuron-specific enolase expression in tumor diagnosis. Arch Pathol Lab Med 108:535, 1984.

    PubMed  CAS  Google Scholar 

  80. Pilkington GJ, Lantos PL: The role of glutamine synthetase in the diagnosis of cerebral tumors. Neuropathol Appl Neurobiol 8: 227–236, 1982.

    Article  PubMed  CAS  Google Scholar 

  81. Amano S, Kreutzberg GW, Reddington M: 5′-nucleotidase activity in human astrocytomas. Acta Neuropathol (Berl) 59: 145–149, 1983.

    Article  CAS  Google Scholar 

  82. Miettinen M, Foidart J-M, Ekblom P: Immunohistochemical demonstration of laminin, the major glycoprotein of basement membranes, as an aid in the diagnosis of soft tissue tumors. Am J Clin Pathol 79:306–311, 1983.

    PubMed  CAS  Google Scholar 

  83. McComb RD, Bigner DD: Immunolocalization of laminin in neoplasms of the central and peripheral nervous systems. J Neuropathol Exp Neurol 44:242–253, 1985.

    Article  PubMed  CAS  Google Scholar 

  84. Liesi P, Dahl D, Vaheri A: Laminin is produced by early rat astrocytes in primary culture. J Cell Biol 96:920–924, 1983.

    Article  PubMed  CAS  Google Scholar 

  85. Giordana MT, Germano I, Giaccone G, Mauro A, Migheli A, Schiffer D: The distribution of laminin in human brain tumors: an immunohistochemical study. Acta Neuropathol (Berl) 67:51–57, 1985.

    Article  CAS  Google Scholar 

  86. Chronwall BM, McKeever PE, Kornblith PL: Glial and nonglial neoplasms evaluated on frozen section by double immunofluorescence for fibronectin and glial fibrillary acidic protein. Acta Neuropathol (Berl) 59:283–287, 1983.

    Article  CAS  Google Scholar 

  87. Kochi N, Tani E, Morimura T, Itagaki T: Immunohistochemical study of fibronectin in human glioma and meningioma. Acta Neuropathol (Berl) 59:119–126, 1983.

    Article  CAS  Google Scholar 

  88. Mosesson MW, Amrani DL: The structure and biologic activities of plasma fibronectin. Blood 56:145–158, 1980.

    PubMed  CAS  Google Scholar 

  89. Phudhichareonrat S, Halliday W, Becker LE: Choroid plexus tumors in childhood. An ultrastructural and immunohistochemical study. J Neuropathol Exp Neurol 43:338 (abstract), 1984.

    Google Scholar 

  90. Coffin CM, Wick MR, Braun JT, Dehner LP: Choroid plexus neoplasms: clinicopathologic and immunohistochemical studies. Am J Surg Pathol 10:394–404, 1986.

    Article  PubMed  CAS  Google Scholar 

  91. Miettinen M, Clark R, Virtanen I: Intermediate filament proteins in choroid plexus and ependyma and their tumors. Am J Pathol. 123:231–240, 1986.

    PubMed  CAS  Google Scholar 

  92. Schwechheimer K, Kartenbeck J, Moll R, Franke WW: Vimentin filament-desmosome cytoskeleton of diverse types of human meningiomas. A distinctive diagnostic feature. Lab Invest 51:584–591, 1984.

    PubMed  CAS  Google Scholar 

  93. Schnitt SJ, Vogel H: Meningiomas. Diagnostic value of immunoperoxidase staining for epithelial membrane antigen. Am J Surg Pathol 10:640–649, 1986.

    Article  PubMed  CAS  Google Scholar 

  94. Holden J, Dolman CL, Churg A: Immunohistochemistry of meningiomas including the angioblastic type. J Neuropathol Exp Neurol 46:50–56, 1987.

    Article  PubMed  CAS  Google Scholar 

  95. Motoi M, Yoshino T, Hayashi K, Nose S, Horie Y, Ogawa K: Immunohistochemical studies on human brain tumors using anti-Leu 7 monoclonal antibody in paraffin-embedded specimens. Acta Neuropathol (Berl) 66: 75–77, 1985.

    Article  CAS  Google Scholar 

  96. Nakagawa Y, Perentes E, Rubinstein LJ: Immunohistochemical characterization of oligodendrogliomas: an analysis of multiple markers. Acta Neuropathol (Berl) 72:15–22, 1986.

    Article  CAS  Google Scholar 

  97. Perentes E, Rubinstein LJ: Immunohistochemical recognition of human neuroepithelial tumors by anti-Leu 7 (HNK-1) monoclonal antibody. Acta Neuropathol (Berl) 69: 227–233, 1986.

    Article  CAS  Google Scholar 

  98. Rubinstein LJ: Monoclonal antibodies in human diagnostic neuro-oncology. In Proceedings of the Xth International Congress of Neuropathology, Stockholm, Sweden, Sept. 7–12, 1986.

    Google Scholar 

  99. Schuller-Petrovic S, Gebhart W, Lassmann H, Rumpold H, Kraft D: A shared antigenic determinant between natural killer cells and nervous tissue. Nature 306:179–181, 1983.

    Article  PubMed  CAS  Google Scholar 

  100. Perentes E, Rubinstein LJ: Immunohistochemical recognition of human nerve sheath tumors by anti-Leu 7 (HNK-1) monoclonal antibody. Acta Neuropathol (Berl) 68: 319–324, 1985.

    Article  CAS  Google Scholar 

  101. Vandevelde M, Fankhauser R, Lunginbühl H: Immunocytochemical studies in canine neuroectodermal brain tumors. Acta Neuropathol (Berl) 65:111–116, 1985.

    Article  Google Scholar 

  102. Figols J, Iglesias-Rozas JR, Kazner E: Myelin basic protein (MBP) in human gliomas: a study of twenty-five cases. Clin Neuropathol 4:116–120, 1985.

    PubMed  CAS  Google Scholar 

  103. Giacobini E: Localization of carbonic anhydrase in the nervous system. Science 134: 1524–1525, 1961.

    Article  PubMed  CAS  Google Scholar 

  104. Giacobini E: A cytochemical study of the localization of carbonic anhydrase in the nervous system. J Neurochem 9:169–177, 1962.

    Article  PubMed  CAS  Google Scholar 

  105. Kumpulainen T, Korhonen LK: Immunohistochemical localization of carbonic anhydrase isoenzyme C in the central and peripheral nervous system of the mouse. J Histochem Cytochem 30:283–292, 1982.

    Article  PubMed  CAS  Google Scholar 

  106. Kumpulainen T, Dahl D, Korhonen LK, Nyström SHM: Immunolabeling of carbonic anhydrase isoenzyme C and glial fibrillary acidic protein in paraffin-embedded tissue sections of human brain and retina. J Histochem Cytochem 31:879–886, 1983.

    Article  PubMed  CAS  Google Scholar 

  107. Raff MC, Mirsky R, Fields KL, Lisak RP, Dorfman SH, Silberberg DH, Gregson NA, Leibowitz S Kennedy MC: Galactocerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture. Nature 274: 813–816, 1978.

    PubMed  CAS  Google Scholar 

  108. Trojanowski JQ, Lee VM-Y: Anti-neurofilament monoclonal antibodies: reagents for the evaluation of human neoplasms. Acta Neuropathol (Berl) 59:155–158, 1983.

    Article  CAS  Google Scholar 

  109. Trojanowski JQ, Lee VM-Y: Monoclonal and polyclonal antibodies against neural antigens: diagnostic applications for studies of central and peripheral nervous system tumors. Hum Pathol 14:281–285, 1983.

    Article  PubMed  CAS  Google Scholar 

  110. Coakham HB, Garson JA, Brownell B, Kemshead JT: Monoclonal antibodies as reagents for tumor diagnosis: a review. J Royal Soc Med 77:780–787, 1984.

    CAS  Google Scholar 

  111. Trojanowski JQ, Lee VM-Y, Schlaepfer WW: An immunohistochemical study of human central and peripheral nervous system tumors, using monoclonal antibodies against neurofilaments and glial filaments. Hum Pathol 15:248–257, 1984.

    Article  PubMed  CAS  Google Scholar 

  112. Bullard DE, Bigner DD: Applications of monoclonal antibodies in the diagnosis and treatment of primary brain tumors. J Neurosurg 63:2–16, 1985.

    Article  PubMed  CAS  Google Scholar 

  113. Coakham HB, Garson JA, Allan PM, Harper EI, Brownell B, Kemshead JT, Lane EB: Immunohistological diagnosis of central nervous system tumors using a monoclonal antibody panel. J Clin Pathol 38:165–173, 1985.

    Article  PubMed  CAS  Google Scholar 

  114. Garson JA, Coakham HB, Kemshead JT, Brownell B, Harper EI, Allan P, Bourne S: The role of monoclonal antibodies in brain tumor diagnosis and cerebrospinal fluid (CSF) cytology. J Neurooncol 3:165–171, 1985.

    Article  PubMed  CAS  Google Scholar 

  115. McLendon RE, Burger PC, Pegram CN, Eng LF, Bigner DD: The immunohistochemical application of three anti-GFAP monoclonal antibodies to formalin-fixed, paraffin-embedded, normal and neoplastic brain tissues. J Neuropathol Exp Neurol 45:692–703, 1986.

    Article  PubMed  CAS  Google Scholar 

  116. Kline TS: Cytological examination of the cerebrospinal fluid. Cancer 15:591–597, 1962.

    Article  PubMed  CAS  Google Scholar 

  117. Kline TS, Speigel IJ, Tinsley M: Tumor cells in the cerebrospinal fluid. J Neurosurg 19: 679–684, 1962.

    Article  PubMed  CAS  Google Scholar 

  118. Bigner SH, Johnston WW: The cytopathology of cerebrospinal fluid. I. Nonneoplastic conditions, lymphoma and leukemia. Acta Cytol (Baltimore) 25:335–351, 1981.

    Google Scholar 

  119. Bigner SH, Johnston WW: The cytopathology of cerebrospinal fluid. II. Metastatic cancer, meningeal carcinomatosis and primary central nervous system neoplasms. Acta Cytol (Baltimore) 25:461–479, 1981.

    CAS  Google Scholar 

  120. Polmeteer FE, Kernohan JW: Meningeal gliomatosis: a study of forty-two cases. Arch Neurol Psychiatry 57:593–616, 1947.

    PubMed  CAS  Google Scholar 

  121. Sayk J: The cerebrospinal fluid in brain tumors. In Vinken PJ, Bruyn GW (eds), Handbook of Clinical Neurology, volume 16. New York: Elsevier, 1974, pp 360–417.

    Google Scholar 

  122. Seldenfeld J, Marton LJ: Biochemical markers of central nervous system tumors measured in cerebrospinal fluid and their potential use in diagnosis and patient management: a review. J Natl Cancer Inst 63:919–931, 1979.

    Google Scholar 

  123. Wasserstrom WR, Schwartz MK, Fleisher M, Posner JB: Cerebrospinal fluid biochemical markers in central nervous system tumors: a review. Ann Clin Lab Sci 11:239–251, 1981.

    PubMed  CAS  Google Scholar 

  124. Jaeckle KA: Assessment of tumor markers in cerebrospinal fluid. Clin Lab Med 5: 303–315, 1985.

    PubMed  CAS  Google Scholar 

  125. Hill S, Martin EM, Ellison EC, Hunt WE: Carcinoembryonic antigen in cerebrospinal fluid of adult brain-tumor patients. J Neurosurg 53:627–632, 1980.

    Article  PubMed  CAS  Google Scholar 

  126. Suzuki Y, Tanaka R: Carcinoembryonic antigen in patients with intracranial tumors. J Neurosurg 53:355–360, 1980.

    Article  PubMed  CAS  Google Scholar 

  127. Twijnstra A, Nooyen WJ, van Zanten AP, Hart AAM, de Visser BWO: Cerebrospinal fluid carcinoembryonic antigen in patients with metastatic and nonmetastatic neurological diseases. Arch Neurol 43:269–272, 1986.

    PubMed  CAS  Google Scholar 

  128. Naganuma H, Inoue HK, Nakamura M, Koizumi H: Localization of carcinoembryonic antigen in mature intracranial teratomas. J Neurosurg 62:870–873, 1985.

    Article  PubMed  CAS  Google Scholar 

  129. Allen JC, Nisselbaum J, Epstein F, Rosen G, Schwartz MK: Alphafetoprotein and human chorionic gonadotropin determination in cerebrospinal fluid. An aid to the diagnosis and management of intracranial germ-cell tumors. J Neurosurg 51:368–374, 1979.

    Article  PubMed  CAS  Google Scholar 

  130. Russell DH, Levy CC, Schimpff SC, Hawk IA: Urinary polyamines in cancer patients. Cancer Res 31:1555–1558, 1971.

    PubMed  CAS  Google Scholar 

  131. Heby O, Marton LJ, Wilson CB, Martinez HM: Polyamine metabolism in a rat brain tumor cell line: its relationship to the growth rate. J Cell Physiol 86:511–522, 1975.

    Article  PubMed  CAS  Google Scholar 

  132. Raina A, Jänne J: Physiology of the natural polyamines putrescine, spermidine and spermine. Med Biol 53:121–147, 1975.

    PubMed  CAS  Google Scholar 

  133. Russell DH, Durie BGM, Salmon SE: Polyamines as predictors of success and failure in cancer chemotherapy. Lancet 2:797–799, 1975.

    Article  PubMed  CAS  Google Scholar 

  134. Marton LJ: Polyamines and brain tumors. Natl Cancer Inst Monogr 46:122–126, 1977.

    Google Scholar 

  135. Marton LJ, Edwards MS, Levin VA, Lubich WP, Wilson CB: Predictive value of cerebrospinal fluid polyamines in medulloblastoma. Cancer Res 39:993–997, 1979.

    PubMed  CAS  Google Scholar 

  136. Harik SI, Sutton CH: Putrescine as a biochemical marker of malignant brain tumors. Cancer Res 39:5010–5015, 1979.

    PubMed  CAS  Google Scholar 

  137. Albright AL, Marton LJ, Lubich WP, Reigel DH: CSF polyamines in childhood. Arch Neurol 40:237–240, 1983.

    PubMed  CAS  Google Scholar 

  138. Moulinoux J-Ph, Quemener V, Le Calve M, Chatel M, Darcel F: Polyamines in human brain tumors. A correlative study between tumor, cerebrospinal fluid and red blood cell free polyamine levels. J Neurooncol 2: 153–158, 1984.

    Article  PubMed  CAS  Google Scholar 

  139. Takaue Y, Nishioka K, van Eys J: Evaluation of polyamine levels of cerebrospinal fluid of children with brain tumors. J Neurooncol 3:327–333, 1986.

    Article  PubMed  CAS  Google Scholar 

  140. Fumagalli R, Grossi Paoletti E, Paoletti R: Sterol metabolism in brain tumors and cerebrospinal fluid. Ann NY Acad Sci 159: 472–479, 1969.

    Article  CAS  Google Scholar 

  141. Ransohoff J, Weiss J: Cerebrospinal fluid sterols in the evaluation of patients with gliomas. Natl Cancer Inst Monogr 46: 114–119, 1977.

    Google Scholar 

  142. Marton LJ, Gordan GS, Barker M, Wilson CB, Lubich W: Failure to demonstrate desmosterol in spinal fluid of brain tumor patients. Arch Neurol 28:137–138, 1973.

    PubMed  CAS  Google Scholar 

  143. Hayakawa J, Morimoto K, Ushio Y, Mori T, Yoshimine T, Myoga A Mogami H: Levels of astroprotein (an astrocyte-specific cerebro-protein) in cerebrospinal fluid of patients with brain tumors: an attempt at immunochemical diagnosis of gliomas. J Neurosurg 52:229–233, 1980.

    Article  PubMed  CAS  Google Scholar 

  144. Martin H, Voss K, Hufnagl P, Frölich K: Automated image analysis of gliomas. An objective and reproducible method for tumor grading. Acta Neuropathol (Berl) 63: 160–169, 1984.

    Article  CAS  Google Scholar 

  145. Klinken LH, Diemer NH, Gjerris F: Automated image analysis, histologic malignancy grading, and survival in patients with astrocytic gliomas. Clin Neuropathol 3:107–112, 1984.

    PubMed  CAS  Google Scholar 

  146. Mann DMA, Yates PO: Polyploidy in the human nervous system. Part I. The DNA content of neurones and glia of the cerebellum. J Neurol Sci 18:183–196, 1973.

    Article  PubMed  CAS  Google Scholar 

  147. Mann DMA, Yates PO: Polyploidy in the human nervous system. Part 2. Studies of the glial cell populations of the Purkinje cell layer of the human cerebellum. J Neurol Sci 18: 197–205, 1973.

    Article  PubMed  CAS  Google Scholar 

  148. Van Dilla MA, Trujillo TT, Mullaney PF, Coulter JR: Cell microfluorometry: a method for rapid fluorescence measurement. Science 163:1213–1214, 1969.

    Article  PubMed  Google Scholar 

  149. Mark J: Chromosomal characteristics of human pituitary adnenomas. Acta Neuropathol (Berl) 19:99–109, 1971.

    Article  CAS  Google Scholar 

  150. Mark J: The human meningioma: a benign tumor with specific chromosome characteristics. In German J (ed), Chromosomes and Cancer. New York: John Wiley, 1974, pp 497–517.

    Google Scholar 

  151. Hoshino T, Nomura K, Wilson CB, Knebel KD, Gray JW: The distribution of nuclear DNA from human brain-tumor cells. J Neurosurg 49:13–21, 1978.

    Article  PubMed  CAS  Google Scholar 

  152. Frederiksen P, Reske-Nielsen E, Bichel P: Flow cytometry in tumours of the brain. Acta Neuropathol (Berl) 41:179–183, 1978.

    Article  CAS  Google Scholar 

  153. Kawamoto K, Herz F, Wolley RC, Hirano A, Kajikawa H, Koss LG: Flow cytometric analysis of the DNA distribution in human brain tumors. Acta Neuropathol (Berl) 46: 39–44, 1979.

    Article  CAS  Google Scholar 

  154. Frederiksen P, Bichel P: Sequential flow cytometric analysis of the single cell DNA content in recurrent brain tumours. Flow Cytometry 4:398–402, 1980.

    Google Scholar 

  155. Mørk SJ, Laerum OD: Modal DNA content of human intracranial neoplasms studies by flow cytometry. J Neurosurg 53:198–204, 1980.

    Article  PubMed  Google Scholar 

  156. Helson L, Traganos F, Allen JC: Flow cyto-fluorometric analyses in cerebrospinal fluid. NY State J Med 82:1255–1259, 1982.

    CAS  Google Scholar 

  157. Braylan RC: Flow cytometry. Arch Pathol Lab Med 107:1–6, 1983.

    PubMed  CAS  Google Scholar 

  158. Shitara N, McKeever PE, Whang-Peng J, Knutsen T, Smith BH, Kornblith PL: Flowcytometric and cytogenetic analysis of human cultured cell lines derived from highland low-grade astrocytomas. Acta Neuropathol (Berl) 60:40–48, 1983.

    Article  CAS  Google Scholar 

  159. Johnson HA, Haymaker WE, Rubini JR, Fliedner TM, Bond VP, Cronkite EP, Hughes WL: A radioautographic study of a human brain and glioblastoma multiforme after the in vivo uptake of tritiated thymidine. Cancer 13:636–642, 1960.

    Article  PubMed  CAS  Google Scholar 

  160. Hoshino T, Barker M, Wilson CB, Boldrey EB, Fewer D: Cell kinetics of human gliomas. J Neurosurg 37:15–26, 1972.

    Article  PubMed  CAS  Google Scholar 

  161. Hoshino T: Therapeutic implications of brain tumor cell kinetics. Natl Cancer Inst Monogr 46:29–35, 1977.

    PubMed  CAS  Google Scholar 

  162. Hoshino T: A commentary on the biology and growth kinetics of low-grade and high-grade gliomas. J Neurosurg 61:895–900, 1984.

    Article  PubMed  CAS  Google Scholar 

  163. Hoshino T, Wilson CB: Cell kinetic analyses of human malignant brain tumors (gliomas). Cancer 44:956–962, 1979.

    Article  PubMed  CAS  Google Scholar 

  164. Hoshino T, Kobayashi S, Townsend JJ, Wilson CB: A cell kinetic study on medulloblastomas. Cancer 55:1711–1713, 1985.

    Article  PubMed  CAS  Google Scholar 

  165. Gratzner HG: Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science 218:474–475, 1982.

    Article  PubMed  CAS  Google Scholar 

  166. Hoshino T, Nagashima T, Murovic J, Levin EM, Levin VA, Rupp SM: Cell kinetic studies of in situ human brain tumors with bromo-deoxyuridine. Cytometry 6:627–632, 1985.

    Article  PubMed  CAS  Google Scholar 

  167. Hoshino T, Nagashima T, Murovic JA, Wilson CB, Edwards MSB, Gutin PH, Davis RL, DeArmond SJ: In situ cell kinetic studies on human neuroectodermal tumors with bromodeoxyuridine labeling. J Neurosurg 64:453–459, 1986.

    Article  PubMed  CAS  Google Scholar 

  168. Burger PC, Shibata T, Kleihues P: The use of the monoclonal antibody Ki-67 in the identification of proliferating cells: application to surgical neuropathology. Am J Surg Pathol 10:611–617, 1986.

    Article  PubMed  CAS  Google Scholar 

  169. Luse SA: Electron microscopic studies of brain tumors. Neurology 10:881–905, 1960.

    PubMed  CAS  Google Scholar 

  170. Raimondi AJ, Mullan S, Evans JP: Human brain tumors: an electron-microscopic study. J Neurosurg 19:731–753, 1962.

    Article  PubMed  CAS  Google Scholar 

  171. Duffell D, Farber L, Chou S, Hartmann JF, Nelson E: Electron microscopic observations on astrocytomas. Am J Pathol 43:539–545, 1963.

    PubMed  CAS  Google Scholar 

  172. Gjerris F, Klinken L: Long-term prognosis in children with benign cerebellar astrocytoma. J Neurosurg 49:179–184, 1978.

    Article  PubMed  CAS  Google Scholar 

  173. Shapiro K, Shulman K: Spinal cord seeding from cerebellar astrocytomas. Childs Brain 2:177–186, 1976.

    PubMed  CAS  Google Scholar 

  174. Golden GS, Ghatak NR, Hirano A, French JH: Malignant glioma of the brain-stem. A clinicopathological analysis of 13 cases. J Neurol Neurosurg Psychiatry 35:732–738, 1972.

    Article  PubMed  CAS  Google Scholar 

  175. Littman P, Jarrett P, Bilaniuk LT, Rorke LB, Zimmerman RA, Bruce DA, Carabell SC, Schut L: Pediatric brain stem gliomas. Cancer 45:2787–2792, 1980.

    Article  PubMed  CAS  Google Scholar 

  176. Cohen ME, Duffner PK, Heffner RR, Lacey DJ, Brecher M: Prognostic factors in brainstem gliomas. Neurology 36:602–605, 1986.

    PubMed  CAS  Google Scholar 

  177. Stroink AR, Hoffman HJ, Hendrick EB, Humphreys RP: Diagnosis and management of pediatric brain-stem gliomas. J Neurosurg 65:745–750, 1986.

    Article  PubMed  CAS  Google Scholar 

  178. Albright AL, Guthkelch AN, Packer RJ, Price RA, Rourke LB: Prognostic factors in pediatric brain-stem gliomas. J Neurosurg 65:751–755, 1986.

    Article  PubMed  CAS  Google Scholar 

  179. Hoffman HJ, Becker L, Craven MA: A clinically and pathologically distinct group of benign brain stem gliomas. Neurosurgery 7:243–248, 1980.

    Article  PubMed  CAS  Google Scholar 

  180. Dohrmann GJ, Farwell JR, Flannery JT: Glioblastoma multiforme in children. J Neurosurg 44:442–448, 1976.

    Article  PubMed  CAS  Google Scholar 

  181. Goldsmith J: Neurofibromatosis associated with tumors of the optic papilla: report of a case. Arch Ophthalmol 41:718–729, 1949.

    CAS  Google Scholar 

  182. Saran N, Winter FC: Bilateral gliomas of the optic discs associated with neurofibromatosis. Am J Ophthalmol 64:607–612, 1967.

    PubMed  Google Scholar 

  183. Lloyd LA: Gliomas of the optic nerve and chiasm in childhood. Trans Am Ophthalmol Soc 71:488–535, 1973.

    PubMed  CAS  Google Scholar 

  184. Chutorian AM, Housepian EM, Hilal S: Optic gliomas of multicentric origin with favorable response to radiotherapy. Trans Am Neurol Assoc 101:229–232, 1976.

    PubMed  CAS  Google Scholar 

  185. Stern J, DiGiacinto GV, Housepian EM: Neurofibromatosis and optic glioma: clinical and morphological correlations. Neurosurgery 4: 524–528, 1979.

    Article  PubMed  CAS  Google Scholar 

  186. Blatt J, Jaffe R, Deutsch M, Adkins JC: Neurofibromatosis and childhood tumors. Cancer 57:1225–1229, 1986.

    Article  PubMed  CAS  Google Scholar 

  187. Couch JR, Weiss SA: Gliomatosis cerebri. Report of four cases and review of the literature. Neurology 24:504–511, 1974.

    PubMed  CAS  Google Scholar 

  188. Artigas A, Cervos-Navarro J, Iglesias JR, Ebhardt G: Gliomatosis cerebri: clinical and histological findings. Clin Neuropathol 4:135–148, 1985.

    PubMed  CAS  Google Scholar 

  189. Cervos-Navarro J, Artigas J, Iglesias J, Aruffo C: Gliomatosis cerebri: ultrastructural studies. Proceedings of the Xth International Congress of Neuropathology, Stockholm, Sweden, Sept. 7–12, 1986.

    Google Scholar 

  190. Mei Lui H, McLone DG, Clark S: Ependymomas of childhood. II. Electron-microscopic study. Childs Brain 3:281–296, 1977.

    Google Scholar 

  191. Hart MN, Earle KM: Primitive neuroectodermal tumors of the brain in children. Cancer 32:890–897, 1973.

    Article  PubMed  CAS  Google Scholar 

  192. Park TS, Hoffman HJ, Hendrick EB, Humphreys RP, Becker LE: Medulloblastoma: clinical presentation and management. Experience at the Hospital for Sick Children, Toronto, 1950–1980. J Neurosurg 58: 543–552, 1983.

    Article  PubMed  CAS  Google Scholar 

  193. Matakas F, Cervós-Navarro J, Gullotta F: The ultrastructure of medulloblastomas. Acta Neuropathol (Berl) 16:271–284, 1970.

    Article  CAS  Google Scholar 

  194. Boesel CP, Suhan JP, Bradel EJ: Ultrastructure of primitive neuroectodermal neoplasms of the central nervous system. Cancer 42: 194–201, 1978.

    Article  PubMed  CAS  Google Scholar 

  195. Camins MB, Cravioto HM, Epstein F, Ransohoff J: Medulloblastoma: an ultrastructural study—evidence for astrocytic and neuronal differentiation. Neurosurgery 6:398–411, 1980.

    Article  PubMed  CAS  Google Scholar 

  196. Packer RJ, Sutton LN, Rorke LB, Littman PA, Sposto R, Rosenstock JG, Bruce DA, Schut L: Prognostic importance of cellular differentiation in medulloblastoma of childhood. J Neurosurg 61:296–301, 1984.

    Article  PubMed  CAS  Google Scholar 

  197. Caputy AJ, McCullough DC, Manz HJ, Patterson K, Hammock MK: A review of the factors influencing the prognosis of medulloblastoma. The importance of cell differentiation. J Neurosurg 66:80–87, 1987.

    Article  PubMed  CAS  Google Scholar 

  198. Liwnicz BH, Rubinstein LJ: The pathways of extraneural spread in metastasizing gliomas. A report of three cases and critical review of the literature. Hum Pathol 10:453–467, 1979.

    Article  PubMed  CAS  Google Scholar 

  199. Campbell AN, Chan HSL, Becker LE, Daneman A, Park TS, Hoffman NJ: Extracranial metastases in childhood primary intracranial tumors. A report of 21 cases and review of the literature. Cancer 53:974–981, 1984.

    Article  PubMed  CAS  Google Scholar 

  200. Hoffman JH, Duffner PK: Extraneural metastases of central nervous system tumors. Cancer 56:1778–1782, 1985.

    Article  PubMed  CAS  Google Scholar 

  201. Becker LE, Hinton D: Primitive neuroectodermal tumors of the central nervous system. Hum Pathol 14:538–550, 1983.

    Article  PubMed  CAS  Google Scholar 

  202. Deck JHN: Cerebral medulloepithelioma with maturation into ependymal cells and ganglion cells. J Neuropathol Exp Neurol 28:442–454, 1969.

    Article  PubMed  CAS  Google Scholar 

  203. Karch SB, Urich H: Medulloepithelioma: definition of an entity. J Neuropathol Exp Neurol 31:27–53, 1972.

    Article  PubMed  CAS  Google Scholar 

  204. Pollak A, Friede RL: Fine structure of medulloepithelioma. J Neuropathol Exp Neurol 36:712–725, 1977.

    Article  PubMed  CAS  Google Scholar 

  205. Sheithauer BW, Rubinstein LG: Cerebral medulloepithelioma: report of a case with multiple divergent neuroepithelial differentiation. Childs Brain 5:62–71, 1979.

    Google Scholar 

  206. Nakamura Y, Becker LE, Mancer K, Gillespie R: Peripheral medulloepithelioma. Acta Neuropathol (Berl) 57:137–142, 1982.

    Article  CAS  Google Scholar 

  207. Auer RN, Becker LE: Cerebral medulloepithelioma with bone, cartilage, and striated muscle: light microscopic and immunohistochemical study. J Neuropathol Exp Neurol 42:256–267, 1983.

    Article  PubMed  CAS  Google Scholar 

  208. Rubinstein LJ: The definition of ependymoblastoma. Arch Pathol 90:35–45, 1970.

    PubMed  CAS  Google Scholar 

  209. Dohromann GJ, Farwell JR, Flannery JT: Ependymomas and ependymoblastomas in children. J Neurosurg 45:273–283, 1976.

    Article  Google Scholar 

  210. Mørk SJ, Rubinstein LJ: Ependymoblastoma. A reappraisal of a rare embryonal tumor. Cancer 55:1536–1542, 1985.

    Article  PubMed  Google Scholar 

  211. Stefanko SZ, Manschot WA: Pinealoblastoma with retinoblastomatous differentiation. Brain 102:321–332, 1979.

    Article  PubMed  CAS  Google Scholar 

  212. Rubinstein LJ: Tumors of the central nervous system. In Atlas of Tumor Pathology, series 2, fasicle 6. Washington, DC: Armed Forces Institute of Pathology, 1972.

    Google Scholar 

  213. Russell DS, Rubinstein LJ: Pathology of the Tumours of the Nervous System, Fourth edition. Baltimore: Williams and Wilkins, 1977.

    Google Scholar 

  214. Stahlberger R, Friede RL: Fine structure of myomedulloblastoma. Acta Neuropathol (Berl) 37:43–48, 1977.

    Article  CAS  Google Scholar 

  215. Fowler M, Simpson DA: A malignant melanin-forming tumor of the cerebellum. J Pathol Bacteriol 84:307–311, 1962.

    Article  PubMed  CAS  Google Scholar 

  216. Bailey P, Cushing H: A classification of the tumors of the glioma group on a histogenetic basis with a correlated study of prognosis. Philadelphia: Lippincott, 1926.

    Google Scholar 

  217. Bailey P, Bucy PC: Astroblastomas of the brain. Acta Psychiatry Scand 5:439–461, 1930.

    Article  Google Scholar 

  218. Kubota, T, Hirano A, Sato K, Yamamoto S: The fine structure of astroblastoma. Cancer 55:745–750, 1985.

    Article  PubMed  CAS  Google Scholar 

  219. Yamashita J, Handa H, Yamagami T, Haebara H: Astroblastoma of pure type. Surg Neurol 24:218–222, 1985.

    Article  PubMed  CAS  Google Scholar 

  220. Hoag G, Sima AAF, Rozdilsky B: Astroblastoma revisited: a reported of three cases. Acta Neuropathol (Berl) 70:10–16, 1986.

    Article  CAS  Google Scholar 

  221. Russell DS: Polar spongioblastomas: their place in the glioma series. Proceedings of the Second International Congress of Neuropathology, part 1. London, 1955.

    Google Scholar 

  222. Cashion EL, Young JM: Intraventricular craniopharyngioma. Report of two cases. J Neurosurg 34:84–87, 1971.

    Article  PubMed  CAS  Google Scholar 

  223. Cooper PR, Ransohoff J: Craniopharyngioma originating in the sphenoid bone. J Neurosurg 36:102–106, 1972.

    Article  PubMed  CAS  Google Scholar 

  224. Hoffman HJ: Craniopharyngiomas. Can J Neurol Sci 12: 348–352, 1985.

    PubMed  CAS  Google Scholar 

  225. DeGirolami U, Schmidek H: Clinicopathological study of 53 tumors of the pineal region. J Neurosurg 39:455–462, 1973.

    Article  PubMed  CAS  Google Scholar 

  226. Palmer PE, Safaii H, Wolfe HJ: Alpha1-antitrypsin and alpha-fetoprotein. Protein markers in endodermal sinus (yolk sac) tumors. Am J Clin Pathol 65:575–582, 1976.

    PubMed  CAS  Google Scholar 

  227. Yoshiki T, Itoh T, Shirai T, Noro T, Tomino Y, Hamajima I, Takeda T: Primary intracranial yolk sac tumor. Immunofluorescent demonstration of alpha-fetoprotein synthesis. Cancer 37:2343–2348, 1976.

    Article  PubMed  CAS  Google Scholar 

  228. Koide O, Watanabe Y, Sato K: A pathological survey of intracranial germinoma and pinealoma in Japan. Cancer 45:2119–2130, 1980.

    Article  PubMed  CAS  Google Scholar 

  229. Nakanishi I, Kawahara E, Kajikawa K, Miwa A, Terahata S: Hyaline globules in yolk-sac tumor. Histochemical, immunohistochemical and electron microscopic studies. Acta Pathol Jpn 32:733–739, 1982.

    PubMed  CAS  Google Scholar 

  230. Bjornsson J, Scheithauer BW, Okazaki H, Leech RW: Intracranial germ cell tumors. Pathobiological and immunohistochemical aspects of 70 cases. J Neuropathol Exp Neurol 44:32–46, 1985.

    Article  PubMed  CAS  Google Scholar 

  231. Jennings MT, Gelman R, Hochberg F: Intracranial germ-cell tumors: natural history and pathogenesis. J Neurosurg 63:155–167, 1985.

    Article  PubMed  CAS  Google Scholar 

  232. Dohrmann GJ, Collias JC: Choroid plexus carcinoma. Case report. J Neurosurg 43: 225–232, 1975.

    Article  PubMed  CAS  Google Scholar 

  233. Valladares JB, Perry RH, Kalbag RM: Malignant choroid plexus papilloma with extra-neural metastasis. J Neurosurg 52:251–255, 1980.

    Article  PubMed  CAS  Google Scholar 

  234. McComb RD, Burger PC: Choroic plexus carcinoma. Report of a case with immunohistochemical and ultrastructural observations. Cancer 51:470–475, 1983.

    Article  PubMed  CAS  Google Scholar 

  235. Ghatak NR, McWhorter JM: Ultrastructural evidence for CSF production by a choroid plexus papilloma. J Neurosurg 45:409–415, 1976.

    Article  PubMed  CAS  Google Scholar 

  236. Milhorat TH, Hammock MK, Davis DA, Fenstermacher JD: Choroid plexus papilloma. I. Proof of cerebrospinal fluid overproduction. Childs Brain 2:273–289, 1976.

    PubMed  CAS  Google Scholar 

  237. Dohrmann J, Farwell JR, Flannery JT: Oligodendrogliomas in children. Surg Neurol 10:21–25, 1978.

    PubMed  CAS  Google Scholar 

  238. Koeppen AH, Cassidy RJ: Oligodendroglioma of the medulla oblongata in a neonate. Arch Neurol 38:520–523, 1981.

    PubMed  CAS  Google Scholar 

  239. Varma RR, Crumrine PK, Bergman I, Latchaw RE, Price RA, Vries J, Painter MJ: Childhood oligodendrogliomas presenting with seizures and low-density lesions on computed tomography. Neurology 33:806–808, 1983.

    PubMed  CAS  Google Scholar 

  240. Robertson DM, Vogel FS: Concentric lamination of glial processes in oligodendrogliomas. J Cell Biol 15:313–334, 1962.

    Article  PubMed  CAS  Google Scholar 

  241. Garcia JH, Lemmi H: Ultrastructure of oligodendroglioma of the spinal cord. Am J Clin Pathol 54:757–765, 1970.

    PubMed  CAS  Google Scholar 

  242. Cervós-Navarro J, Ferszt R, Brackertz M: The ultrastructure of oligodendrogliomas. Neurosurg Rev 4:17–31, 1981.

    Article  PubMed  Google Scholar 

  243. Cervós-Navarro J, Pehlivan N: Ultrastructure of oligodendrogliomas. Acta Neuropathol (Berl) 7 (Suppl):91–93, 1981.

    Google Scholar 

  244. Burger PC, Rawlings CC, Cox EB, McLendon RE, Schold SC Jr, Bullard DE: Clinicopathological correlations in the oligodendroglioma. Cancer 59:1345–1352, 1987.

    Article  PubMed  CAS  Google Scholar 

  245. Ludwig CL, Smith MT, Godfrey AD, Armbrustmacher VW: A clinicopathological study of 323 patients with oligodendrogliomas. Ann Neurol 19:51–21, 1986.

    Article  Google Scholar 

  246. Mørk SJ, Halvorsen TB, Lindegaard K-F, Eide GE: Oligodendroglioma. Histologic evaluation and prognosis. J Neuropathol Exp Neurol 45:65–78, 1986.

    Article  PubMed  Google Scholar 

  247. Sotrel A, Smith TW, Wallman JK, Winston KR: Childhood oligodendrogliomas: clinicopathological study of 38 cases. In Proceedings of the Xth International Congress of Neuropathology, Stockholm, Sweden, Sept. 7–12, 1986.

    Google Scholar 

  248. Fu Y-S, Chen ATL, Kay S, Young HF: Is subependymoma (subependymal glomerate astrocytoma) an astrocytoma or ependymoma? A comparative ultrastructural and tissue culture study. Cancer 34:1992–2008, 1974.

    Article  PubMed  CAS  Google Scholar 

  249. Azzarelli B, Rekate HL, Roessmann U: Subependymoma: a case report with ultrastructural study. Acta Neuropathol (Berl) 40: 279–282, 1977.

    Article  CAS  Google Scholar 

  250. Garrido E, Becker LE, Hoffman HJ, Hendrick EB, Humphreys R: Gangliogliomas in children. A clinicopathological study. Childs Brain 4:339–346, 1978.

    PubMed  CAS  Google Scholar 

  251. Globus JH: Glioneuroma and spongioneuro-blastoma, forms of primary neuroectodermal tumors of the brain. Am J Cancer 32:163–220, 1938.

    Google Scholar 

  252. Stefansson K, Wollmann R: Distribution of glial fibrillary acidic protein in central nervous system lesions of tuberous sclerosis. Acta Neuropathol (Berl) 52:135–140, 1980.

    Article  CAS  Google Scholar 

  253. Stefansson K, Wollmann R: Distribution of the neuronal specific protein, 14-3-2, in central nervous system lesions of tuberous sclerosis. Acta Neuropathol (Berl) 53:113–117, 1981.

    Article  CAS  Google Scholar 

  254. Nakamura Y, Becker LE: Subependymal giant-cell tumor: astrocytic or neuronal? Acta Neuropathol (Berl) 60:271–277, 1983.

    Article  CAS  Google Scholar 

  255. Bonnin JM, Rubinstein LJ, Papasozomenus SC, Marangos PJ: Subependymal giant cell astrocytoma. Significance and possible cytogenetic implications of an immunoshitochemical study. Acta Neuropathol (Berl) 62:185–193, 1984.

    Article  CAS  Google Scholar 

  256. Drake JM, Hendrick EB, Becker LE, Chuang SH, Hoffman HJ, Humphreys RP: Intracranial meningiomas in children. Pediatr Neurosci 12:134–139, 1985–1986.

    Google Scholar 

  257. Kruse F Jr: Hemangiopericytoma of the meninges (angioblastic meningioma of Cushing and Eisenhardt): clinicopathologic aspects and follow-up studies in 8 cases. Neurology 11:771–777, 1961.

    PubMed  Google Scholar 

  258. Burger PC, Vogel FS: Surgical Pathology of the Nervous System and Its Coverings, second edition. New York: John Wiley, 1982.

    Google Scholar 

  259. Pitkethly DT, Hardman JM, Kempe LG, Earle KM: Angioblastic meningiomas: clinicopathologic study of 81 cases. J Neurosurg 32:539–544, 1970.

    Article  PubMed  CAS  Google Scholar 

  260. Sassin JF, Chutorian AM: Intracranial chordoma in children. Arch Neurol 17:89–93, 1967.

    PubMed  CAS  Google Scholar 

  261. Becker LE, Yates AJ, Hoffman HJ, Norman MG: Intracranial chordoma in infancy. Case report. J Neurosurg 42:349–352, 1975.

    Article  PubMed  CAS  Google Scholar 

  262. Abenoza P, Sibley RK: Chordoma: an immunohistologic study. Hum Pathol 17: 744–747, 1986.

    Article  PubMed  CAS  Google Scholar 

  263. Ortiz-Suarez H, Erickson DL: Pituitary adenomas of adolescents. J Neurosurg 43: 437–439, 1975.

    Article  PubMed  CAS  Google Scholar 

  264. Martinez AJ, Lee A, Moossy J, Maroon JC: Pituitary adenoma: clinicopathological and immunohistochemical study. Ann Neurol 7:24–36, 1980.

    Article  PubMed  CAS  Google Scholar 

  265. Ezrin C, Kovacs, K, Horvath E: Pathology of the adenohypophysis. In Bloodworth MB Jr (ed), Endocrine Pathology: General and Surgical, second edition. Baltimore: Williams and Wilkins, 1982, pp 100–132.

    Google Scholar 

  266. Esiri MM, Adams CBT, Burke C, Underdown R: Pituitary adenomas: immunohistology and ultrastructural analysis of 118 tumors. Acta Neuropathol (Berl) 62:1–14, 1983.

    Article  CAS  Google Scholar 

  267. Kawamura, J, Garcia JH, Kamijyo Y: Cerebellar hemangioblastoma: histogenesis of stroma cells. Cancer 31:1528–1540, 1973.

    Article  PubMed  CAS  Google Scholar 

  268. Jeffreys R: Pathological and haematological aspects of posterior fossa haemangioblastomata. J Neurol Neurosurg Psychiatry 38:112–119, 1975.

    Article  PubMed  CAS  Google Scholar 

  269. Chaudhry AP, Montes M, Cohn GA: Ultrastructure of cerebellar hemangioblastoma. Cancer 42:1834–1850, 1978.

    Article  PubMed  CAS  Google Scholar 

  270. Deck JHN, Rubinstein LJ: Glial fibrillary acidic protein in stormal cells of some capillary hemangioblastomas: significance and possible implications of an immunoperoxidase study. Acta Neuropathol (Berl) 54:173–181, 1981.

    Article  CAS  Google Scholar 

  271. Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, Scolnick EM, Dhar R, Lowy DR, Chang EH: Mechanism of activation of a human oncogene. Nature 300: 143–149, 1982.

    Article  PubMed  CAS  Google Scholar 

  272. Krontiris TG: The emerging genetics of human cancer. N Engl J Med 309:404–409, 1983.

    Article  PubMed  CAS  Google Scholar 

  273. Emanuel BS: Chromosomal in situ hybridization and the molecular cytogenetics of cancer. Surv Synth Pathol Res 4:269–281, 1985.

    PubMed  CAS  Google Scholar 

  274. Ratner L, Josephs SF, Wong-Staal F: Oncogenes: their role in neoplastic transformation. Ann Rev Microbiol 39:419–449, 1985.

    Article  CAS  Google Scholar 

  275. Barbacid M: Oncogenes and human cancer: cause or consequence? Carcinogenesis 7: 1037–1042, 1986.

    Article  PubMed  CAS  Google Scholar 

  276. Garrett CT: Oncogenes. Clin Chim Acta 156:1–40, 1986.

    Article  PubMed  CAS  Google Scholar 

  277. Pitot HC: Oncogenes and human neoplasia. Clin Lab Med 6:167–179, 1986.

    PubMed  CAS  Google Scholar 

  278. Benedict WF, Banerjee A, Mark C, Murphree AL: Nonrandom chromosomal changes in untreated retinoblastomas. Cancer Genet Cytogenet 10:311–333, 1983.

    Article  PubMed  CAS  Google Scholar 

  279. Cavenee W, Dryja T, Phillips R, Benedict WF, Godbout R, Gallie BL, Murphree AL, Strong LC, White RL: Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305:779–784, 1983.

    Article  PubMed  CAS  Google Scholar 

  280. Riccardi VM, Sujansky E, Smith AC, Francke U: Chromosomal imbalance in the Aniridia-Wilms’ tumor association: 11p interstitial deletion. Pediatrics 61:604–610, 1978.

    PubMed  CAS  Google Scholar 

  281. Koufos A, Hansen MF, Lampkin BC, Workman ML, Copeland NG, Jenkins NA, Cavenee WK: Loss of alleles at loci on human chromosome 11 during genesis of Wilms’ tumor. Nature 309:170–172, 1984.

    Article  PubMed  CAS  Google Scholar 

  282. Fearon ER, Vogelstein B, Feinberg AP: Somatic deletion and duplication of genes on chromosome 11 in Wilms’ tumours. Nature 309:176–178, 1984.

    Article  PubMed  CAS  Google Scholar 

  283. Schwab M, Alitalo K, Klempnauer K-H, Varmus HE, Bishop JM, Gilbert F, Brodeur G, Goldstein M, Trent J: Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 305:245–248, 1983.

    Article  PubMed  CAS  Google Scholar 

  284. Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM: Amplification of n-myc in untreated human neuroblastomas correlated with advanced disease stage. Science 224: 1121–1124, 1984.

    Article  PubMed  CAS  Google Scholar 

  285. Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM: Amplification of N-myc sequences in primary human neuroblastomas: correlation with advanced disease stage. In Evans AE, D’Angio GJ, Seeger RC, (eds), Advances in Neuroblastoma Research. New York: Alan R Liss, Inc, 1985, pp 105–113.

    Google Scholar 

  286. Lee W-H, Murphree L, Benedict WF: Comparison studies of oncogenes in retinoblastoma and neuroblastoma. In Evans AE, D’Angio GJ, Seeger RC, (eds), Advances in Neuroblastoma Research. New York: Alan R Liss, Inc, 1985, pp 131–139.

    Google Scholar 

  287. Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY, Hammond D: Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 313:1111–1116, 1985.

    Article  PubMed  CAS  Google Scholar 

  288. Cox D, Yuncken C, Spriggs AI: Minute chromatin bodies in malignant tumours of childhood. Lancet 2:55–58, 1965.

    Article  Google Scholar 

  289. Brodeur GM, Sekhon GS, Goldstein MN: Specific chromosomal aberration in human neuroblastoma. Am J Hum Genet 27:20A (abstract), 1975.

    Google Scholar 

  290. Brodeur GM, Sekhon GS, Goldstein MN: Chromosomal aberrations in human neuroblastomas. Cancer 40:2256–2263, 1977.

    Article  PubMed  CAS  Google Scholar 

  291. Brodeur GM, Green AA, Hayes FA, Williams KJ, Williams DL, Tsiatis AA: Cytogenetic features of human neuroblastomas and cell lines. Cancer Res 41:4678–4686, 1981.

    PubMed  CAS  Google Scholar 

  292. Balaban G, Gilbert F: Homogeneously staining regions in direct preparations from human neuroblastomas. Cancer Res 42:1838–1842, 1982.

    PubMed  CAS  Google Scholar 

  293. Westermark B, Nister M, Heldin C-H: Growth factors and oncogenes in human malignant glioma. Neurologic Clin 3: 785–799, 1985.

    CAS  Google Scholar 

  294. Carpenter G, Cohen S: Epidermal growth factor. Annu Rev Biochem 48:193–216, 1979.

    Article  PubMed  CAS  Google Scholar 

  295. Deuel TF, Huang JS, Huang SS, Stroobant P, Waterfield MD: Expression of a platelet-derived growth factor-like protein in simian sarcoma virus transformed cells. Science 221: 1348–1350, 1983.

    Article  PubMed  CAS  Google Scholar 

  296. Waterfield MD, Scrace GT, Whittle N, Stroobant P, Johnsson A, Wasteson A, Westermark B, Heldin C-H, Huang JS, Deuel TF: Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature 304: 35–39, 1983.

    Article  PubMed  CAS  Google Scholar 

  297. Johnsson A, Betsholtz C, Heldin C-H, Westermark B: Antibodies against platelet-derived growth factor inhibit acute transformation by simian sarcoma virus. Nature 317:438–440, 1985.

    Article  PubMed  CAS  Google Scholar 

  298. Johnsson A, Betsholtz C, von der Helm K, Heldin C-H, Westermark B: Platelet-derived growth factor agonist activity a secreted form of the v-sis oncogene product. Proc Natl Acad Sci USA 82:1721–1725, 1985.

    Article  PubMed  CAS  Google Scholar 

  299. Deinhardt F: Biology of primate retroviruses. In Klein G (ed), Viral Oncology. New York: Raven Press, 1980, pp 357–398.

    Google Scholar 

  300. Nister M, Heldin C-H, Wasteson Å, Westermark B: A platelet-derived growth factor analog produced by a human clonal glioma cell line. Ann NY Acad Sci 397:25–33, 1982.

    Article  PubMed  CAS  Google Scholar 

  301. Betsholtz C, Heldin C-H, Nister M, Ek B, Wasteson Å, Westermark B: Synthesis of a PDGF-1ke growth factor in human glioma and sarcoma cells suggests the expression of the cellular homologue to the transforming protein of simian sarcoma virus. Biochem Biophys Res Commun 117:176–182, 1983.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Becker, L.E., Jay, V. (1990). Tumors of the Central Nervous System in Children. In: Deutsch, M. (eds) Management of Childhood Brain Tumors. Foundations of Neurological Surgery, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1501-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1501-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8807-7

  • Online ISBN: 978-1-4613-1501-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics