Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 103))

Abstract

The past eight years have witnessed dramatic developments of catheters and laser systems for angioplasty. Laser radiation provides a powerful and unique capability for the ablation and/or thermal remodeling of obstructing atheromatous plaque or thrombus. The utility of lasers for angioplasty is linked closely to the monochromaticity and coherence properties of the laser beam as well as the ability to deliver high-power laser irradiation through percutaneous fiberoptic catheters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sanborn TA, Cumberland DC, Taylor ID, Ryan TJ (1985). Human percutaneous laser thermal angioplasty. Circulation 72: 11–1210.

    Google Scholar 

  2. Spears JR, Reyes RV, James LM, Sinofsky EL (1988). Laser balloon angioplasty: initial clinical percutaneouse coronary results. 61st Scientific Sessions, American Heart Association, Washington, DC.

    Google Scholar 

  3. White RA, Kopchok GE, Donayre CE, Peng SK et al. (1988). Mechanism of tissue fusion in argon laser-welded vein-artery anastomoses. Lasers Surg Med 8: 83.

    Article  PubMed  CAS  Google Scholar 

  4. Litvack F, Grundfest WS, Goldenberg T, Laudenslager J, et al. (1988). Pulsed laser angioplasty: Wavelength power and energy dependencies relevant to clinical application. Lasers Surg Med 8: 61.

    Article  Google Scholar 

  5. Takata AN, Zaneveld L, Richter W (1977). Laser-induced thermal damage in skin. Report SAM-TR-77-38, USAF School of Aerospace Medicine, Brooks AFB, Texas.

    Google Scholar 

  6. Prince MR, LaMuraglia GM, Teng P, Deutsch TF, et al. (1978). Preferential ablation of calcified arterial plaque with laser–induced plasmas. IEEE J Quan Electron 23: 1783.

    Article  Google Scholar 

  7. Langerholc J, (1979). Moving phase transitions in laser-irradiated biological tissue. App Optics 13: 2286.

    Article  Google Scholar 

  8. Partovi F, Izatt JA, Cothern RM, Kitrell C, et al. (1987). A model for thermal ablation of biological tissue using laser radiation. Lasers Surg Med 7: 141.

    Article  PubMed  CAS  Google Scholar 

  9. Rastegar S (1987). Laser ablation of biological tissue. Ph.D. Dissertation, University of Texas at Austin, TX.

    Google Scholar 

  10. Yoon G, Welch AJ, Motamedi M, van Gemert MJC (1987). Development and application of three–dimensional light distribution model for laser irradiated tissue. IEEE J Quant Electro 23: 1721.

    Article  Google Scholar 

  11. Takata AN, Zaneveld I., Richter W (1978). Laser-induced thermal damage of skin. Final report SAM-TR-77-38, U.S. Air Force, Aero– space Medical Division, Brooks Air Force Base, Texas (1978).

    Google Scholar 

  12. Henriques FC, Moritz AR (1947). Studies of thermal injury, I. The conduction of heat to and through skin and the temperature attained therein. A theoretical and experimental investigation. Am J Pathol 23: 531.

    Google Scholar 

  13. Barns FS (1975). Applications of lasers to biology and medicine. Proceedings of IEEE 63: 1269.

    Article  Google Scholar 

  14. Motamedi M, Rastegar S. LeCarpentier GL, Welch AJ (1989). Light and temperature distribution in laser irradiated tissue: The effect of anisotropic scattering and refractive index. App Optics, in press.

    Google Scholar 

  15. Rastegar S, Motamedi M, Welch AJ, Hayes LH: A theoritical study of the efect of optical properties in laser ablation of tissue. IEEE transactions on BME, in press.

    Google Scholar 

  16. Welch AJ, Wissler EH, Priebe LA (1980). Significance of blood flow in calculations of temperature in laser irradiated tissue. IEEE Transactions on Biomedical Engineering, BME- 27: 164–167.

    Article  CAS  Google Scholar 

  17. Jacques SL, Prahl SA (1987). Modeling optical and thermal distributions in tissue during laser irradiation. Laser in Surg Med 6: 494.

    Article  CAS  Google Scholar 

  18. Welch AJ (1984). The thermal response of laser irradiated tissue. IEEE J Quant Electro QE- 20: 1471–1481.

    Article  Google Scholar 

  19. Torres JH (1986). Effects of a laser heated metallic probe on normal and atherosclerotic human aorta. Master’s Thesis, University of Texas at Austin, TX.

    Google Scholar 

  20. Torres JH, Motamedi M, Welch AJ, Pearce JA. Disparity of aborption of argon laser radition by fibrous versus fatty plaque: Implications for laser angioplasty submitted for publication.

    Google Scholar 

  21. Welch AJ, Bradley AB, Torres JH, Motamedi M, et al. (1987). Laser probe ablation of normal and atherosclerotic human aorta in-vitro: First thermographic and histologic analysis. Circulation 76: 1353–1363.

    Article  PubMed  CAS  Google Scholar 

  22. Carslow HS, Jaeger C (1959). Conduction of Heat in Solids. Clarendon Press, Oxford.

    Google Scholar 

  23. Lunardini VJ (1981). Heat transfer in cold climates, Van Nostrand Reinhold Company, New York.

    Google Scholar 

  24. Dabby FW, Paek UC (1972). High-intensity laser-induced vaporization and explosion of solid material. IEEE Quan Electron 8: 106.

    Article  CAS  Google Scholar 

  25. LeCarpentier GL, Rastegar S, Welch AJ, Prahl SA, Hussein H (1988). Comparative analysis of laser ablation using direct laser irradiation and a metal contact probe. Proceedings of the World Congress on Medical Physics and Biomedical Engineering 1988, San Antonio, TX.

    Google Scholar 

  26. LeCarpentier GL, Motamedi M, Rastegar S, Welch AJ (1989). Simultaneous analysis of thermal and mechanical events during CW laser ablation of biological media. Proceedings of SPIE 1989, Los Angles, CA.

    Google Scholar 

  27. LeCarpentier GL, Motamedi M, McMath LP, Welch AJ (1989). The effect of wavelength on ablation mechanisms during CW laser irradiation: Argon versus Nd:YAG (1.32 (µm). Proceedings of IEEE EMBS ’89, Seattle, Washington.

    Google Scholar 

  28. Valvano JW, Chitsabesan B (1987). Thermal conductivity and diffusivity of arterial wall and atherosclerotic plaque. Lasers in Life Sci 1:3.

    Google Scholar 

  29. Agah R, Pearce JA, Welch AJ (1987). Quantitative characterization of arterial tissue thermal damage. Lasers Surg Med 7: 62.

    Google Scholar 

  30. Agah R, (1988). Quantitative characterization of arterial tissue thermal damage. Master’s Thesis, University of Texas Austin, TX.

    Google Scholar 

  31. LeCarpentier GL, Motamedi M, McMath LP, Welch AJ (1989). CW laser ablation of vascular tissue: Analysis of thermal and mechanical events. Submitted for publication.

    Google Scholar 

  32. LeCarpentier GL, Motamedi M (1989). Comparison of vascular tissue response to CW Nd:YAG 1.32 µm and 1.06 µm radiation: A thermographic study. In preparation.

    Google Scholar 

  33. Hale GM, Querry MR (1973). Optical constants of water in the 200-nm to 200-µm wavelength region. Appl Optics 12, (3): 555– 563.

    Article  CAS  Google Scholar 

  34. Spells KE (I960). The thermal conductivities of some biological fluids. Med Biol 5: 139–153.

    Google Scholar 

  35. Boley BA, Weiner GH (1985). Theory of Thermal Stress. Krieger Publishing, Malabar, FL.

    Google Scholar 

  36. Motamedi M, Torres JH, Welch AJ (1989). CW laser ablation of calcific tissue. Proceedings, Radiological Society of North America, Chicago IL (submitted).

    Google Scholar 

  37. Abela GS, ‘Hot tip’?: Another method of laser vascular recanalization. Lasers Surg Med 5:103.

    Google Scholar 

  38. Torres JH, Welch AJ, Ghidoni JJ (1988). Adventitial temperature and extent of damage during in vitro application of a laser thermal probe to canine arteries. Proceeding of the World Congress on Biomedical Engineering and Medical Physics 1988. San Antonio, TX.

    Google Scholar 

  39. Motamedi M, LeCarpentier GL, Cheong WF, Dalmia P, et al. (1989). Photo–ablation of canine myocardium: comparison of argon and Nd:YAG lasers. Proceedings of AHA 1989. New Orleans, LA (submitted).

    Google Scholar 

  40. Motamedi M, Welch AJ, Cheong WF, Ghaffari S, et al. (1988). Thermal lensing in biologic medium. IEEE J Quant Electron QE 24:693– 696.

    Google Scholar 

  41. Motamedi M, LeCarpentier GL, Torres JH, Welch AJ. The influence of beam diameter on thermal response of tissue during CW laser irradiation. In preparation.

    Google Scholar 

  42. Welch AJ, Pearce JA, Valvano JW, Hayes LH, et al. (1984). Effects of laser radiation on plaque and vessel wall. Lasers Surg Med 5: 251–264.

    Article  Google Scholar 

  43. Welch AJ, Pullhamus GD (1984). Measurement and prediction of thermal injury in the retina of the rhesus monkey. IEEE J BME 31: 633.

    Article  CAS  Google Scholar 

  44. Sinofsky E, Dumont MG (1988). Temperature measurement using silicia and fluoride based optical fibers for biological applications. SPIE 907: 131–136.

    Google Scholar 

  45. Incorpera FP, De Witt DP (1981). Fundamentals of Heat Transfer. John Wiley & Sons, New York.

    Google Scholar 

  46. De Witt (1986). Inferring temperature from optical radiation measurements. Appi Optics 25: 596–601.

    Article  Google Scholar 

  47. Pearce JA, Motamedi M, Agah R, Welch AJ (1986). Thermographic measurements of tissue temperature during laser angioplasty. Heat and mass transfer in the microcirculation of thermally significant vessels. HTD-61: 49–54.

    Google Scholar 

  48. Cain CP, Welch AJ (1974). Measured and predicted laser induced temperature rise in the rabbit fundus. Invest Ophthalmol 13: 60.

    PubMed  CAS  Google Scholar 

  49. Welch AJ, Motamedi M (1985). Interaction of laser light with biological tissue. Photo-Biology and Photo-Medicine, Mattellucci and Chester, eds. Plenum, New York.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Motamedi, M., LeCarpentier, G.L., Torres, J.H., Welch, A.J. (1990). Thermal Analysis of Laser Ablation of Cardiovascular Tissue. In: Abela, G.S. (eds) Lasers in Cardiovascular Medicine and Surgery: Fundamentals and Techniques. Developments in Cardiovascular Medicine, vol 103. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1489-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1489-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8801-5

  • Online ISBN: 978-1-4613-1489-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics