Advertisement

Laser-Induced Arterial Fluorescence Spectroscopy

  • Lawrence I. Deckelbaum
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 103)

Abstract

Precise targeting of laser energy to atherosclerotic plaque is crucial for the safe performance of laser angioplasty. Although it is possible to increase the luminal diameter of an artery using direct laser energy [1], these efforts have been complicated in experimental studies by an unacceptably high incidence of vessel perforation [2–4]. Various imaging techniques to precisely direct laser energy to atherosclerotic plaque have been evaluated. These have included fluoroscopy [4, 5], intravascular angioscopy [6, 7], and high-frequency ultrasound [2]. None of these modalities, however, have consistently enabled adequate targeting of laser radiation to ablate only the atheromatous plaque.

Keywords

Atherosclerotic Plaque Fluorescence Spectroscopy Atheromatous Plaque Laser Angioplasty Hematoporphyrin Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abela GS, Normann S, Cohen D, Feldman RL, et al. (1982). Effects of carbon dioxide, Nd-YAG, and argon laser radiation on coronary atheromatous plaques. Am J Cardiol 50:1199– 1205.PubMedCrossRefGoogle Scholar
  2. 2.
    Isner JM, Donaldson RF, Funai JT, Deckelbaum LI, et al. (1985). Observations in an intact human postmortem preparation of intraoperative laser coronary angioplasty. Circulation 72 (Suppl II): 191–199.Google Scholar
  3. 3.
    Lee G, Ikeda RM, Theis JH, Chan MC, et al. (1984). Acute and chronic complications of laser angioplasty: Vascular wall damage and formation of aneurysms in the atherosclerotic rabbit. Am J Cardiol 53: 290–293.PubMedCrossRefGoogle Scholar
  4. 4.
    Sanborn TR, Faxon DP, Haudenschild CG, Gottsman SB, et al. (1983) Angiographic and histopathologic consequences of in–vivo laser radiation of atherosclerotic lesions (abstr). Circulation 68 (Suppl III): III–145.Google Scholar
  5. 5.
    Ginsburg R, Wexler L, Mitchell RS, Profitt D (1985). Percutaneous transluminal laser angioplasty for treatment of peripheral vascular disease. Radiology 156: 619–624.PubMedGoogle Scholar
  6. 6.
    Lee G, Ikeda RM, Dwyer RM, Hussein H, et al. (1982). Feasibility of intravascular laser irradiation for in-vivo visualization and therapy of cardiocirculatory diseases. Am Heart J 103: 1076–1077.PubMedCrossRefGoogle Scholar
  7. 7.
    Abela GS, Seeger JM, Barbieri E, Pepine CJ, et al. (1986). Angioscopy for guidance of laser recanalization in man (abstr). J Am Coll Cardiol 7: 153A.Google Scholar
  8. 8.
    Alfano RR, Lam W, Zarrabi H, Alfano MA, et al. (1984). Human teeth with and without caries studied by laser scattering fluorescence and absorption spectroscopy. IEEE J Quantum Electron QE-20:1512–1516.Google Scholar
  9. 9.
    Alfano RR, Tata D, Corder J, Tomashefsky P, et al. (1984). Laser induced fluorescence spectroscopy from native cancerous and normal tissues. IEEE J Quantum Electron QE-20: 1507–1511.Google Scholar
  10. 10.
    Andersson PS, Montan S, Svanberg S (1987). Multispectral system for medical fluorescence imaging. IEEE J Quantum Electron QE-23: 1798–1805.Google Scholar
  11. 11.
    Kapadia CR, Cutruzzola FW, O’Brien KM, Stetz ML, et al. (1988). Detection of adenomatous transformation of colonic mucosa by fiberoptic laser-induced fluorescence (LIF) spectroscopy. Gasteroenterology 94: 216.Google Scholar
  12. 12.
    Leffell DJ, Stetz ML, Milstone LM, Deckelbaum LI (1988). A technique for the evaluation of photoaging. Dermatol 124: 1514–1518.Google Scholar
  13. 13.
    Banga I, Bihari-Varga M (1974). Investigations of free and elastin-bound fluorescent substances presentin the atherosclerotic lipid and calcium plaques. Connect Tissue Res 2: 237–241.PubMedCrossRefGoogle Scholar
  14. 14.
    Blankenhorn DH, Braunstein H (1958). Caro– tenoids in man. III. The microscopic pattern of fluorescence in atheromas, and its relation to their growth. J Clin Invest 37: 160–165PubMedCrossRefGoogle Scholar
  15. 15.
    Maylath-Palagyi J, Banga I (1968). Three fluorescent components in the human aorta. Acta Physiol Acad Sci Hung Tomas 33: 317–324.Google Scholar
  16. 16.
    Prince MR, Gargolis R, Deutsch T, Parrish JA, et al. (1985). Selective light absorption in atheromas (abstr.) Clin Res 33: 218A.Google Scholar
  17. 17.
    Lakowicz JR (1983). Principles of Fluorescence Spectroscopy. New York: Plenum Press.Google Scholar
  18. 18.
    Konev SV (1967). Fluorescence and Phosphorescence of Proteins and Nucleic Acids. New York: Plenum Press.Google Scholar
  19. 19.
    Barenboim GM, Domanskii AN, Turoverov KK (1969). Luminescence of Biopolymers and Cells. New York: Plenum Press.Google Scholar
  20. 20.
    Renault G (1987). Clinical applications of laser fluorometer. Lasers Optron 6: 56–59.Google Scholar
  21. 21.
    Udenfriend S (1962). Fluorescence Assay in Biology and Medicine. New York: Academic Press.Google Scholar
  22. 22.
    Rokosova B, Rapp JH, Porter JM, Bentley JP (1986). Composition and metabolism of symptomatic distal aortic plaque. J Vase Surg 3: 617–22.Google Scholar
  23. 23.
    Kittrell C, Willett RL, de los Santos-Pacheo C, Ratliff NB et al. (1985). Diagnosis of fibrous arterial atherosclerosis using fluorescence, Appi Opt 25: 2280–2281.Google Scholar
  24. 24.
    Hoyt CC, Richards-Kortum RR, Costello B, Sacks BA, et al. (1988). Remote biomedical spectroscopic imaging of human artery wall. Lasers Surg Med 8: 1–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Sartori M, Henry PD, Roberts R, Chin RP, et al. (1986). Estimation of arterial wall thickness and detection of atherosclerosis by laser induced argon fluorescence (abstr). J Am Coll Cardiol 7: 207A.Google Scholar
  26. 26.
    Sartori MP, Bossaller C, Weilbacher D, Henry PH, et al. (1986). Detection of atherosclerotic plaques and characterization of arterial wall structure by laser induced fluorescence (abstr). Circulation 74 (Suppl II): II–7.Google Scholar
  27. 27.
    Deckelbaum LI, Lam JK, Cabin HS, Clubb KS, et al. (1987). Discrimination of normal and atherosclerotic aorta by laser–induced fluorescence. Lasers Med Surg 7: 330–335.CrossRefGoogle Scholar
  28. 28.
    Deckelbaum LI, Stetz ML, Lam JK, Clubb KS, et al. (1986). Fiberoptic laser-induced fluorescence detection of atherosclerosis and plaque ablation: Potential for laser angioplasty guidance (abstr). Circulation 74 (Suppl II): II–7.Google Scholar
  29. 29.
    O’Brien KM, Gmitro AF, Stetz ML, Cutruzzola FW, et al. (1987). Evaluation of discriminant models as control algorithms for laser angioplasty. Proceedings of Ninth Annual Conference of Engineering in Medicine and Biology Society, pp. 638–639, Boston, MA.Google Scholar
  30. 30.
    Leon MB, Prevosti LG, Smith PD, Swain JA, et al. (1987). In vivo laser-induced fluorescence plaque detection: Preliminary results in patients (abstr). Circulation 76(Suppl I V ): 1623.Google Scholar
  31. 31.
    Casale PH, Nishioka NS, Southern JF, Block PC, et al. (1987). Improved criteria for detecting atherosclerotic plaque by fluorescence spectroscopy (abstr). Circulation 76 (Suppl IV): IV–2084.Google Scholar
  32. 32.
    Lu DY, Leon MB, Smith PD, et al. (1986). Atherosclerotic plaque identification using surface fluorescence (abstr). Clin Res 34: 630A.Google Scholar
  33. 33.
    Sartori M, Sauerbrey R, Kubodera S, Tittel FK, et al. (1987). Autofluorescence maps of atherosclerotic human arteries—A new technique in medical imaging., IEEE J Quantum Electron QE-23:1794–1797.CrossRefGoogle Scholar
  34. 34.
    Chaudhry H, Richards-Kortum R, Kolubayev T, Kittrell C, et al. (1988). Alteration of artery wall fluorescence due to excessive laser irradiation (abstr). J Am Coll Cardiol I I: 49A.Google Scholar
  35. 35.
    Gmitro AF, Cuttruzzola FW, Stetz ML, Deckelbaum LI (1988). Measurement depth of laser– induced tissue fluorescence with application to laser angioplasty. Appi Opt 27: 1844–1849.CrossRefGoogle Scholar
  36. 36.
    Deckelbaum LI, Isner JM, Donaldson RF, Clarke RH, et al. (1985). Reduction of laser-induced pathologic tissue injury using pulsed energy delivery. Am J Cardiol 56: 662–667.PubMedCrossRefGoogle Scholar
  37. 37.
    Deckelbaum LI, Isner JM, Donaldson RF, Laliberte SA, et al. (1986). Use of pulsed energy delivery to minimize tissue injury resulting from carbon dioxide laser irradiation of cardiovascular tissue. J Am Coll Cardiol 7: 898–908.PubMedCrossRefGoogle Scholar
  38. 38.
    Deckelbaum LI, Stetz ML, O’Brien KM, Cutruzzola FW, et al. (1988). Fluorescence spectroscopy guidance of laser ablation of atherosclerotic plaque, (abstr). J Am Coll Cardiol 11: 107A.Google Scholar
  39. 39.
    Leon MB, Prevosti LG, Smith PD, Bonner RF, et al. (1987). Probe and fire laser angioplasty: Fluorescence atheroma detection and selective laser atheroma ablation (abstr). Circulation 76 (Suppl V): V–1628.Google Scholar
  40. 40.
    Leon MB, Lu DY, Smith PD, Bonner RF, et al. (1986). Arterial surface fluorescence becomes normal after laser atheroma ablation (abstr). Circulation 74 (Suppl II): II–1330.Google Scholar
  41. 41.
    Wollenek G, Laufer G, Hohla K, Horvath R, et al. (1988). Excimer laser induced simultaneous fluorescence spectral identification and ablation of human atherosclerotic plaques (abstr). Lasers Surg Med 8: 153.CrossRefGoogle Scholar
  42. 42.
    Deckelbaum LI, Sarembock IJ, Stetz ML, O’Brien KM, et al. (1988). In-vivo fluorescence spectroscopy of normal and atherosclerotic arteries. Proceedings of the SPIE Conference on Medical Applications of Lasers, Los Angeles, CA.Google Scholar
  43. 43.
    Prevosti LG, Wynne JJ, Becker CG, Linsker R, et al. (1988). Laser-induced fluorescence detection of atherosclerotic plaque with hema– toporphyrin derivative used as an exogenous probe. J Vase Surg 7: 500–506.Google Scholar
  44. 44.
    Leon MB, Prevosti LG, Smith PD, Swain J A, et al. (1987). In-vivo laser-induced fluorescence plaque detection: Preliminary results in patients. Circulation 76 (Suppl IV): IV–1623.Google Scholar
  45. 45.
    Raekallio J, Lindgren (1966). Accumulation of tetracyclines in atherosclerotic lesions of human aorta. Acta Path Microbiol Scand 66: 323–326.Google Scholar
  46. 46.
    Murphy-Chutorian D, Kosek J, Mok W, Quay S, et al. (1985). Selective absorption of ultraviolet laser energy by human atherosclerotic plaque treated with tetracycline. Am J Cardiol 55: 1293–1297.PubMedCrossRefGoogle Scholar
  47. 47.
    Kessel D, Sykes E (1984). Porphyrin accumulation by atheromatous plaques of the aorta. Photochem Photobio 40: 59–61.CrossRefGoogle Scholar
  48. 48.
    Spears JR, Serur J, Shropshire D, Paulin S (1983). Fluorescence of experimental atheromatous plaques with hematoporphyrin derivative. J Clin Invest 71: 395–399.PubMedCrossRefGoogle Scholar
  49. 49.
    Spokojny AM, Serur JR, Skillman J, Spears R (1986). Uptake of hematoporphyrin derivative by atheromatous plaques: Studies in human in-vitro and rabbit in-vivo. J Am Coll Cardiol 8: 1387–92.PubMedCrossRefGoogle Scholar
  50. 50.
    Clarke RH, Cerio FM, Isner JM (1987). Chloro-tetracycline-induced fluorescence from atherosclerotic plaque with UV laser excitation. J Luminesce 39: 87–96.CrossRefGoogle Scholar
  51. 51.
    Sun CH, Duzman E, Mellot J, Liaw LH, et al. (1987). Spectroscopic, morphologic, and cyto–toxic studies on major fractions of hematoporphyrin derivative and Photofrin II. Lasers Surg Med 7: 171–179.PubMedCrossRefGoogle Scholar
  52. 52.
    Tata DB, Foresti M, Cordero J, Tomashefsky P, et al. (1986). Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues. J Biophys 50: 463–469.CrossRefGoogle Scholar
  53. 53.
    Edholm P, Jacobson B (1964). A method for estimating aortic atheromatosis. Lancet I: 535–536.Google Scholar
  54. 54.
    Bowker TJ, Edwards P, Hall TA, Regel M, et al. (1986). Optical transmission of normal and atheromatous arterial wall: A spectral analysis. Cardiovasc Res 20: 393–397.PubMedCrossRefGoogle Scholar
  55. 55.
    Prince MR, Deutsch TF, Matthews-Roth M, Margolis R, et al. (1986). Preferential light absorption in atheromas in–vitro. J Clin Invest 78: 295–302.PubMedCrossRefGoogle Scholar
  56. 56.
    Kaminow IP, Wiesenfeld JM, Choy DSJ (1984). Argon laser disintegration of thrombus and atherosclerotic plaque. Appl Opt 23:1301– 1032.Google Scholar
  57. 57.
    Hirschfeld T (1977). The choice between absorption and fluorescent techniques. Appl Spectroscop 31: 245.CrossRefGoogle Scholar
  58. 58.
    Clarke RH, Isner JM, Gauthier T, Nakagawa K, et al. (1988). Spectroscopic characterization of cardiovascular tissue. Lasers Surg Med 8: 45–59.PubMedCrossRefGoogle Scholar
  59. 59.
    Clarke RH, Hanlon EG, Isner JM, Brody H (1987). Laser Raman spectroscopy of calcified atherosclerotic lesions in cardiovascular tissue. Appl Opt 26: 3175–3176.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Lawrence I. Deckelbaum

There are no affiliations available

Personalised recommendations