Skip to main content

Ultrastructural cytochemistry of cartilage proteoglycans and their relation to the calcification process

  • Chapter

Part of the book series: Electron Microscopy in Biology and Medicine ((EMBM,volume 7))

Abstract

Proteoglycans (PGs) occur in virtually almost all mammalian tissues and are especially prominent in cartilage. They are characterized by their core proteins and have at least one covalently bound glycosaminoglycan (GAG) chain. These macromolecules and type II collagen are major components of the extracellular matrix of cartilage, where the former exists predominantly as aggregates, resulting from the specific interaction of PG monomers and hyaluronate. This interaction is stabilized by oligosaccharide-containing link proteins. The monomers consist of a core protein, to which are attached a large number of chondroitin sulfate chains, keratan sulfate chains, and both O-linked and N-linked oligosaccharides (Figs. 6-1–6-3).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fransson, LA: Mammalian glycosaminoglycans. In: The Polysaccharides, Vol 3 Go Aspinall (ed), New York: Academic Press, p 336 - 415, 1985.

    Google Scholar 

  2. Hascall, VC, Hascall, GK: Proteoglycans. In: Cell Biology of Extracellular Matrix. ED Hay (ed), New York: Plenum Press, p 39–64, 1981.

    Chapter  Google Scholar 

  3. Campo, RD: Protein-polysaccharides of cartilage and bone in health and disease. Clin Orthop 68: 182–209, 1970.

    PubMed  CAS  Google Scholar 

  4. Thyberg, CJO: Electron microscopy of proteoglycans. In: Ultrastracture of the Connective Tissue Matrix. A Ruggeri, PM Motta (eds), Boston: Martinus Nijhoff Publishers, p 95–112, 1984.

    Google Scholar 

  5. Ruggeri, A, Benazzo, F: Collagen-proteoglycan interaction. In: Ultrastructure of the Connective Tissue Matrix. A Ruggeri, PM Motta (eds), Boston: Martinus Nijhoff Publishers, p 113–125, 1984.

    Google Scholar 

  6. Hunziker, EB, Herrmann, W: In situ localization of cartilage extracellular matrix components by immunoelectron microscopy after cryotechnical tissue processing. J Histochem Cytochem 35: 647–655, 1987.

    Article  PubMed  CAS  Google Scholar 

  7. Thyberg J, Lohmander S, Friberg U: Electron microscopic demonstration of proteoglycans in guinea pig epiphyseal cartilage. J Ultrastruct Res 45: 407–427, 1973.

    Article  PubMed  CAS  Google Scholar 

  8. Davis, WL, Jones, RG, Knight, JP, Hagler, HK: Cartilage calcification: An ultrastructural, histochemical, and analytical X-ray microprobe study of the zone of calcification in the normal avian epiphyseal growth plate. J Histochem Cytochem 30: 221–234, 1982.

    Article  PubMed  CAS  Google Scholar 

  9. Eisenstein, R, Sorgente, N, Kuettner, KE: Organization of extracellular matrix in epiphyseal growth plate. Am J Pathol 65: 515–534, 1971.

    PubMed  CAS  Google Scholar 

  10. Hascall, GK: Cartilage proteoglycans: Comparison of sectioned and spread whole molecules. J Ultrastruct Res 70: 369–375, 1980.

    Article  PubMed  CAS  Google Scholar 

  11. Luft, JH: The fine structure of hyaline cartilage matrix following ruthenium red fixative and staining (abstract). J Cell Biol 27: 61A, 1965.

    Google Scholar 

  12. Khan, TA, Overton, J: Lanthanum staining of developing chick cartilage and reaggregating cartilage cells. J Cell Biol 44: 433–438, 1970.

    Article  PubMed  CAS  Google Scholar 

  13. Ruggeri, A, Dell’orbo, C, Quacci, D: Electron microscopic visualization of proteoglycans with Alcian Blue. Histochem J 7: 187–197, 1975.

    Article  PubMed  CAS  Google Scholar 

  14. Schofield, BH, Williams, BR, Doty, SB: Alcian blue staining of cartilage for electron microscopy. Application of the critical electrolyte concentration principle. Histochem J 7: 139–149, 1975.

    Article  PubMed  CAS  Google Scholar 

  15. Shepard, N, Mitchell, N: The localization of proteoglycan by light and electron microscopy using safranin O: A study of epiphyseal cartilage. J Ultrastruct Res 54: 451–460, 1976.

    Article  PubMed  CAS  Google Scholar 

  16. Mitchell, N, Shepard, N, Harrod, J: The measurement of proteoglycan in the mineralizing region of the rat growth plate. An electron microscopic and X-ray microanalytical study. J Bone Joint Surg 64-A: 32–38, 1982.

    Google Scholar 

  17. Shepard, N, Mitchell, N: Simultaneous localization of pro-teoglycan by light and electron microscopy using toluidine blue O. A study of epiphyseal cartilage. J Histochem Cytochem 24: 621–629, 1976.

    Article  PubMed  CAS  Google Scholar 

  18. Hunziker, EB, Herrmann, W, Schenk, RK: Improved cartilage fixation by ruthenium hexammine trichloride (RHT). A prerequisite for morphometry in growth cartilage. J Ultrastruct Res 81: 1–12, 1982.

    Article  PubMed  CAS  Google Scholar 

  19. Shepard, N, Mitchell, N: Ultrastructural modifications of proteoglycans coincident with mineralization in local regions of rat growth plate. J Bone Joint Surg 67-A: 455–464, 1985.

    Google Scholar 

  20. Scott, JE: Contributions of light and electron histochemical techniques to the study of proteoglycan function in cartilage. Acta Biol Hung 35: 227–232, 1984.

    PubMed  CAS  Google Scholar 

  21. McMillan, PN, Ferayorni, LS, Gerhardt, CO, Jauregui, HO: Light and electron microscope analysis of lectin binding to adult rat liver in situ. Lab Invest 50: 408–420, 1984.

    PubMed  CAS  Google Scholar 

  22. Takagi, M, Saito, I, Kuwata, F, Otsuka, K: Specific binding of peanut agglutinin and soybean agglutinin to chondroitinase ABC-digested cartilage proteoglycans: Histochemical, ultrastructural, cytochemical, and biochemical characterization. Histochemical J, 20: 88–98, 1988.

    Article  CAS  Google Scholar 

  23. Spicer, SS, Schulte, BA, Thomopoulos, GN, Parmley, RT, Takagi, M: Cytochemistry of complex carbohydrates by light and electron microscopy: Available methods and their application. In: Connective Tissue Diseases. International Academy of Pathology Monograph No. 24. BM Wagner, R Fleischmajer, N Kaufman (eds), Baltimore: Williams & Wilkins p 163–211, 1983.

    Google Scholar 

  24. Bonucci, E: Further investigation on the organic /inorganic relationships in calcifying cartilage. Calcif Tissue Res 3: 38–54, 1969.

    Article  PubMed  CAS  Google Scholar 

  25. Bonucci, E, Reurink, J: The fine structure of decalcified cartilage and bone: A comparison between decalcification procedures performed before and after embedding. Calcif Tissue Res 25: 179–190, 1978.

    Article  PubMed  CAS  Google Scholar 

  26. Matukas, VJ, Krikos, GA: Evidence for changes in protein-polysaccharide associated with the onset of calcification in cartilage. J Cell Biol 39: 43–48, 1968.

    Article  PubMed  CAS  Google Scholar 

  27. Matukas, VJ, Panner, BJ, Orbison, JL: Studies on ultra-structural identification and distribution of proteinpolysaccharide in cartilage matrix. J Cell Biol 32: 365–377, 1967.

    Article  PubMed  CAS  Google Scholar 

  28. Monga, G, Canese, MG, Bussolati, G: Electron microscopical demonstration of sulphated mucopolysaccharides in mouse tracheal cartilage with a diaminobenzidine-osmium tetroxide technique. Histochem J 4: 205–211, 1972.

    Article  PubMed  CAS  Google Scholar 

  29. Revel JP: A stain for the ultrastructural localization of acid mucopolysaccharides. J Microscopie 3: 535–554, 1964.

    CAS  Google Scholar 

  30. Revel JP, Hay ED: Light and electron microscopic studies of mucopolysaccharides in developing amphibian and mammalian cartilage. Anat Rec 148: 326A, 1964.

    Google Scholar 

  31. Scherft JP, Moskalewski S: The amount of proteoglycans in cartilage matrix and the onset of mineralization. Metab Bone Dis Rel Res 5: 195–203, 1984.

    Article  CAS  Google Scholar 

  32. Serafini-Fracassini A, Smith JW: The Structure and Biochemistry of Cartilage. Edinburgh and London: Churchill Livingstone, p 1–228, 1974.

    Google Scholar 

  33. Smith JW: The disposition of proteinpolysaccharide in the epiphyseal plate cartilage of the young rabbit. J Cell Sci 6: 843–864, 1970.

    PubMed  CAS  Google Scholar 

  34. Takagi M, Parmley RT, Denys FR: Ultrastructural cytochemistry and immunocytochemistry of proteoglycans associated with epiphyseal cartilage calcification. J Histochem Cytochem 31: 1089–1100, 1983.

    Article  PubMed  CAS  Google Scholar 

  35. Takagi M, Parmley RT, Denys F, Kageyama M: Ultra-structural visualization of complex carbohydrates in epiphyseal cartilage with the tannic acid-metal salt methods. J Histochem Cytochem 31: 783–790, 1983.

    Article  PubMed  CAS  Google Scholar 

  36. Takagi M, Parmley RT, Spicer SS, Denys FR, Setser ME: Ultrastructural localization of acidic glycoconjugates with the low iron diamine method. J Histochem Cytochem 30: 471–476, 1982.

    Article  PubMed  CAS  Google Scholar 

  37. Takagi M, Parmley RT, Toda Y, Austin RL: Ultra- structural cytochemistry and immunocytochemistry of sulfated glycosaminoglycans in epiphyseal cartilage. J Histochem Cytochem 30: 1179–1185, 1982.

    Article  PubMed  CAS  Google Scholar 

  38. Suzuki S: Chondroitinases from Proteus vulgaris and Flavobacterium heparinum. In: Methods in Enzymology: Complex Carbohydrates, Vol 28, Part B. V Ginsburg (ed), New York: Academic Press, p 911–921, 1972.

    Chapter  Google Scholar 

  39. Hiyama K, Okada S: Crystallization and some properties of chondroitinase from Arthrobacter aurescens. J Biol Chem 250: 1824–1828, 1975.

    PubMed  CAS  Google Scholar 

  40. Michelacci YM, Dietrich CP: A comparative study between a chondroitinase B and a chondroitinase AC from Flavobacterium heparinum. Isolation of a chondroitinase.AC-susceptible dodecasaccharide from chondroitin sulphate B. Biochem J 151: 121–129, 1975.

    PubMed  CAS  Google Scholar 

  41. Cowman MK, Balazs EA, Bergmann CW, Karl Meyer: Preparation and circular dichroism analysis of sodium hyaluronate oligosaccharides and chondroitin. Biochemistry 20: 1379–1385, 1981.

    Article  PubMed  CAS  Google Scholar 

  42. Poole AR, Webber C, Pidoux I, Choi H, Rosenberg LC: Localization of a dermatan sulfate proteoglycan (DS-PG II) in cartilage and the presence of an immunologically related species in other tissues. J Histochem Cytochem 34: 619–625, 1986.

    Article  PubMed  CAS  Google Scholar 

  43. Rosenberg L, Tang L, Choi H, Pal S, Johnson T, Poole AR, Roughley P, Reiner A, Pidoux I: Isolation, characterization and immunohistochemical localization of a dermatan sulfate-containing proteoglycan from bovine fetal epiphyseal cartilage. Prog Clin Biol Res 110 (B): 67–84, 1983.

    Google Scholar 

  44. Choi HU, Tang L-H, Johnson TL, Rosenberg L: Proteoglycans from bovine nasal and articular cartilages. Fractionation of the link proteins by wheat germ agglutinin affinity chromatography. J Biol Chem 260: 13370–13376, 1985.

    PubMed  CAS  Google Scholar 

  45. Giant TT: Concanavalin A-binding link protein in the proteoglycan aggregate of hyaline cartilage. Biochem Biophys Res Comm 106: 158–163, 1982.

    Article  Google Scholar 

  46. Giant T, Levai G: Localization of antigenic components in proteoglycan aggregate of bovine nasal cartilage. Histochemistry 77: 217–232, 1983.

    Article  Google Scholar 

  47. Toda N, Doi A, Jimbo A, Matsumoto I, Seno N: Interaction of sulfated glycosaminoglycans with lectins. J Biol Chem 256: 5345–5349, 1981.

    PubMed  CAS  Google Scholar 

  48. Poole AR, Pioux I, Reiner A, Rosenberg L: An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage. J Cell Biol 93: 921–937, 1982.

    Article  PubMed  CAS  Google Scholar 

  49. Anderson HC, Sajdera SW: The fine structure of bovine nasal cartilage. Extraction as a technique to study proteoglycans and collagen in cartilage matrix. J Cell Biol 49: 650–663, 1971.

    Article  PubMed  CAS  Google Scholar 

  50. Hunziker EB, Schenk RK: Cartilage ultrastructure after high pressure freezing, freeze substitution, and low temperature embedding. II. Intercellular matrix ultrastructure — preservation of proteoglycans in their native state. J Cell Biol 98: 277–282, 1984.

    Article  PubMed  CAS  Google Scholar 

  51. Hunziker EB, Schenk RK: Structural organization of proteoglycans in cartilage. In: Biology of Proteoglycans. Biology of Extracellular Matrix: A Series. TN Wight, RP Mecham (eds), London: Academic Press, p 155–185, 1987.

    Google Scholar 

  52. Akisaka T, Shigenaga Y: Ultrastructure of growing epiphyseal cartilage processed by rapid freezing and freeze-substitution. J Electron Microsc 32: 305–320, 1983.

    CAS  Google Scholar 

  53. Arsenault AL, Ottensmeyer FP, Heath IB: An electron microscopic and spectroscopic study of murine epiphyseal cartilage: Analysis of fine structure and matrix vesicles preserved by slam freezing and freeze substitution. J Ultrastruct Res 98: 32–47, 1988.

    Article  CAS  Google Scholar 

  54. Ozawa H, Yamato T, Takano Y, Ejiri S: Fine structure and elemental analysis of the calcifying epiphyseal cartilage prepared by freeze-substitution methods at liquid helium temperature. In: Endocrine Control of Bone and Calcium Metabolism. Chon DV, JT Potts Jr, T Fujita (eds) Amsterdam: Excerpta Medica, p 428–431, 1984.

    Google Scholar 

  55. Willingham MC, Rutherford AV: The use of osmium-thiocarbohydrazide-osmium (OTO) and ferrocyanide- reduced osmium methods to enhance membrane contrast and preservation in cultured cells. J Histochem Cytochem 32: 455–460, 1984.

    Article  PubMed  CAS  Google Scholar 

  56. Brighton CT: Structure and function of the growth plate. Clin Orthop 136: 22–32, 1978.

    PubMed  Google Scholar 

  57. Lohmander S, Hjerpe A: Proteoglycans of mineralizing rib and epiphyseal cartilage. Biochim Biophys Acta 404: 93–109, 1975.

    PubMed  CAS  Google Scholar 

  58. Buckwalter JA: Proteoglycan structure in calcifying cartilage. Clin Orthop 172: 207–232, 1983.

    PubMed  CAS  Google Scholar 

  59. Appleton J: Ultrastructural observations on the inorganic/organic relationships in early cartilage calcification. Calcif Tissue Res 7: 307–317, 1971.

    Article  PubMed  CAS  Google Scholar 

  60. Poole AR, Pidoux I, Rosenberg: Role of proteoglycans in endochondral ossification: Immunofluorescent localization of link protein and proteoglycan monomer in bovine fetal epiphyseal growth plate. J Cell Biol 92: 249–260, 1982.

    Article  PubMed  CAS  Google Scholar 

  61. Howell DS, Carlson L: Alterations in the composition of growth cartilage septa during calcification studied by microscopic X-ray elemental analysis. Exp Cell Res 51: 185–195, 1968.

    Article  PubMed  CAS  Google Scholar 

  62. Barckhaus RH, Krefting E-R, Althoff J, Quint P, Hohling HJ: Electron-microscopic microprobe analysis on the initial stages of mineral formation in the epiphyseal growth plate. Cell Tissue Res 217: 661–666, 1981.

    Article  PubMed  CAS  Google Scholar 

  63. Arsenault AL, Ottensmeyer FP: Quantitative spatial distributions of calcium, phosphorus, and sulfur in calcifying epiphysis by high resolution electron spectroscopic imaging. Proc Natl Acad Sci USA 80: 1322–1326, 1983.

    Article  PubMed  CAS  Google Scholar 

  64. Buckwalter JA, Ehrlich MG, Armstrong AL, Mankin HJ: Electron microscopic analysis of articular cartilage proteoglycan degradation by growth plate enzymes. J Orthop Res 5: 128–132, 1987.

    Article  PubMed  CAS  Google Scholar 

  65. Ehrlich MG, Armstrong AL, Neuman RG, Davis MW, Mankin HJ: Patterns of proteoglycan degradation by a neutral protease from human growth-plate epiphyseal cartilage. J Bone Joint Surg 64A: 1350–1354, 1982.

    PubMed  CAS  Google Scholar 

  66. Kawabe N, Ehrlich MG, Mankin HJ: In vivo degradation systems of the epiphyseal cartilage. Clin Orthop 211: 244–251, 1986.

    PubMed  Google Scholar 

  67. Katsura N: Calcification and proteoglycan. Jpn J Oral Biol 26: 315–325, 1984, in Japanese.

    Article  CAS  Google Scholar 

  68. Poole AR, Rosenberg LC: Proteoglycans, chondrocalcin, and the calcification of cartilage matrix in endochondral ossification. In: Biology of Proteoglycans. Biology of Extracellular Matrix: A series. TN Wight, RP Mecham (eds), London: Academic Press, p 187–210, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Takagi, M. (1990). Ultrastructural cytochemistry of cartilage proteoglycans and their relation to the calcification process. In: Bonucci, E., Motta, P.M. (eds) Ultrastructure of Skeletal Tissues. Electron Microscopy in Biology and Medicine, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1487-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1487-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8800-8

  • Online ISBN: 978-1-4613-1487-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics