Ultrastructure of cartilage

Part of the Electron Microscopy in Biology and Medicine book series (EMBM, volume 7)


Cartilage is a stiff tissue exhibiting viscoelastic properties when subjected to tension, compression, or shearing forces. Such properties reflect the characteristics of the intercellular substance, which are realized through the unique interrelationships existing between its solid and aqueous phases. The organic components important in this respect are collagen and proteoglycan molecules [1–4].


Articular Cartilage Growth Plate Collagen Fibril Cartilage Matrix Matrix Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maroudas A: Physicochemical properties of articular cartilage. In: Adult Articular Cartilage, 2nd ed. Tunbridge Wells: MA Freeman (ed) Pitman Medical, p 215–290, 1979.Google Scholar
  2. 2.
    Mow VC, Holmes MH, Lai WM: Fluid transport and mechanical properties of articular cartilage: A review. J Biomech 17: 377–394, 1984.PubMedGoogle Scholar
  3. 3.
    Meyers ER, Mow VC: Biomechanics of cartilage and its response to biomechanical stimuli. In: Cartilage. Vol 1. Structure, Function, and Biochemistry. BK Hall (ed). New York: Academic Press, p 313–314. 1983.Google Scholar
  4. 4.
    Woo SL-Y, Mow VC, Lai WM: Biomechanical properties of articular cartilage. In: Handbook of Bio-engineering. R Skalak, S Chien (eds). New York: McGraw-Hill, p 4.1–4. 44, 1987.Google Scholar
  5. 5.
    Maroudas A: Biophysical chemistry of cartilaginous tissues with special reference to solute fluid transport. Biorheology 12: 233–248, 1975.PubMedGoogle Scholar
  6. 6.
    Szirmai JA: Quantitative approaches in the histochemistry of mucopolysaccharides. J Histochem Cxtochem 11: 24–34, 1963.Google Scholar
  7. 7.
    Szirmai JA: Structure of cartilage. In: Thüle International Symposia: Aging of Connective and Skeletal Tissue. A Engel, T Larssen (eds), Stockholm: Nordiska Bokhandelens Förlag, 163–200, 1969.Google Scholar
  8. 8.
    Bennighoff A: Ueber den funktionellen Bau des Knorpels. Anal Anz, Erg Heft 55: 250–267, 1922.Google Scholar
  9. 9.
    Stockwell RA: Biology of Cartilage Cells. Cambridge: Cambridge University Press, p 32–80, 1979.Google Scholar
  10. 10.
    Molenhauer J, van der Mark K: Isolation and characterization of a collagen-binding glycoprotein from chondrocyte membranes. EMBO 2 (1): 45–50, 1983.Google Scholar
  11. 11.
    Hewitt AT, Varner HH, Silver MH, Dessau W. Wilkes C, Martin G: The isolation and partial characterization of chondronectin, an attachment factor for chondrocytes. J Biol Chem 257: 2330–2334, 1982.PubMedGoogle Scholar
  12. 12.
    Eggli PS, Hermann W, Hunziker E, Schenk RK: Matrix compartments in the growth plate of the proximal tibia of rats. Anat Record 211: 246–257, 1985.Google Scholar
  13. 13.
    Silberberg R: Ultrastructure of articular cartilage. Clin Orthop 57: 233 - 257, 1968.PubMedGoogle Scholar
  14. 14.
    Knese KH: Stützgewebe und Skelettsysteme. In: Hand¬buch der Mikroskopischen Anatomie des Menschen. Vol II/5. Bargmann W (ed), Berlin: Springer Verlag p 435–442, 1979.Google Scholar
  15. 15.
    Hunziker EB, Hermann W, Schenk RK: Improved cartilage fixation with ruthenium (III) hexammine trichloride (RHT). J Ultrastruct Res 81: 1–12, 1982.PubMedGoogle Scholar
  16. 16.
    Hunziker EB, Herrmann W, Schenk RK. Müller M, Moor H: Cartilage ultrastructure after high pressure freezing, freeze substitution, and low temperature embedding. I. Chondrocyte ultrastructure-implications for the theories of mineralization and vascular invasion. J Cell Biol 98: 267–276, 1984.PubMedGoogle Scholar
  17. 17.
    Hunziker EB, Herrmann W, Schenk RK: Ruthenium hexammine trichloride (RHT)-mediated interaction between plasmalemmal components and pericellular matrix proteoglycans is responsible for the preservation of chondrocyte plasma membranes in situ during cartilage fixation. J Histochem Cytochem 31: 717–727, 1983.PubMedGoogle Scholar
  18. 18.
    Hunziker EB, Herrmann W: In situ localization of cartilage extracellular matrix components bv immunoelectron microscopy after cryotechnical tissue processing. J Histochem Cytochem 35: 647–655, 1987.PubMedGoogle Scholar
  19. 19.
    Engfeldt B, Hjertquist SO: Studies on the epiphyseal growth zone. Virchows Arch (Cell Pathol) 1: 222–229, 1968.Google Scholar
  20. 20.
    von Jozsa L, Szederkenv G: Ueber Verluste der Gewebsmuccopolvsaccharide während der Fixierung. Acta Histochem 26: 255–262, 1967.PubMedGoogle Scholar
  21. 21.
    Knese KH: Stützgewebe and Skelettsysteme. In: W Bergmann (ed). (ed) Handbuch der Mikroskopischen Anatomie des Menschen, Vol II/5. Berlin: Springer Verlag, p 442–444. 1979.Google Scholar
  22. 22.
    Buckwalter J, Hunziker EB, Rosenberg L, Cuotts R, Adams M, Evre D: Articular cartilage: Composition and structure. In: SL Woo, JA Buckwalter (eds). Injury and repair of the musculoskeleral soft tissues. Parke Ridge, IL: American Society of Orthopaedic Surgeons, p 405–425, 1987.Google Scholar
  23. 23.
    Clark JM: The organization of collagen in cryofractured rabbit articular cartilage: A scanning electron microscopic study. J Orthop Res 3: 17–29, 1985.PubMedGoogle Scholar
  24. 24.
    Rosenberg L: Chemical basis for the histological use of safranin O. In: The Study of Articular Cartilage. J Bone Joint Surg [Am.] 53-A: 69–81, 1971.Google Scholar
  25. 25.
    Schenk RK, Eggli PS, Hunziker EB: Articular cartilage morphology. In: Articular Cartilage Biochemistry. Kuettner KE, R Schleyerbach, VC Hascall (eds). New York: Raven Press p 3–22, 1986.Google Scholar
  26. 26.
    Kiviranta I, Jurvelin J, Tammi M, Säämänen AM, Helminen HJ: Microspectrophotometric quantitation of glycosaminoglycans in articular cartilage sections stained with Safranin O. Histochemistry 82: 249–255, 1985.PubMedGoogle Scholar
  27. 27.
    Jubb RW. Eggert FM: Staining of demineralized cartilage. II. Quantitation of articular cartilage proteoglycan after fixation and rapid demineralization. Histochemistry 73: 391–397, 1981.PubMedGoogle Scholar
  28. 28.
    Campo RD, Betz RR: Loss of proteoglycans during decalcification of fresh metaphyses with disodium ethylene diamine tetraacetate (EDTA). Calcif Tissue Int, 41: 52–55, 1987.PubMedGoogle Scholar
  29. 29.
    Hunziker EB, Schenk RK, Cruz-Orive LM: Quantitation of chondrocyte performance in growth plate cartilage during longitudinal bone growth. J Bone Joint Surg 69-A: 162–173. 1987.Google Scholar
  30. 30.
    Heinegard D, Paulsson M: Cartilage. In: Structural and Contractile Proteins: Part E: Extracellular Matrix, Methods in Enzymology, Vol 145. LW Cunningham (ed), Orlando, FL: Academic Press, p 336–362, 1987.Google Scholar
  31. 31.
    von der Mark K, Mollenhauer J, Pfäffle M, van Menxel M, Mueller PK: Role of anchorin C II in the interaction of chondrocytes with extracellular collagen. In: Articular Cartilage Biochemistry. Kuettner KE, R Schleyerbach, VC Hascall (eds). New York: Raven Press, p 125–141, 1986.Google Scholar
  32. 32.
    Prehm P: Mechanism, localization, and inhibition of hyaluronate synthesis. In: Articular Cartilage Biochemistry. KE Kuettner, R Schleyerbach, VC Hascall (eds). New York: Raven Press, p 81–92, 1986.Google Scholar
  33. 33.
    Hunziker EB, Schenk RK: Physiological mechanisms adopted by chondrocytes in regulating longitudinal bone growth. J Physiol 414: 55–71, 1989.PubMedGoogle Scholar
  34. 34.
    Benva PD, Brown PD, Padilla SR: Microfilament modification by dihydrocytochalasin B causes retinoic acid- modulated chondrocytes to reexpress the differentiated collagen phenotype without a change in shape. J Cell Biol 106: 161–170, 1988.Google Scholar
  35. 35.
    Caplan AJ: The extracellular matrix is instructive. Bio Essays 5: 129–132, 1987.Google Scholar
  36. 36.
    Kashiwa HK, Luchtel SL, Park HZ: Chondroitin sulfate and electron lucent bodies in the pericellular rim about unshrunken hypertrophied chondrocytes of chicken long bone. Anat Ree 183: 359–372, 1975.Google Scholar
  37. 37.
    Hunziker EB, Schenk RK: Structural organization of proteoglycans in cartilage. In: Biology of Proteoglycans. TN Wight, Mecham P (eds), Orlando, FL: Academic Press, 155–185, 1987.Google Scholar
  38. 38.
    Linn FC, Sokoloff L: Movement and composition of interstitial fluid of cartilage. Arthritis Rheumat 8: 481–494, 1965.PubMedGoogle Scholar
  39. 39.
    Maroudas A, Schneiderman R: “Free” and “exchangeable” or “trapped” and “non-exchangeable” water in cartilage. J Orthop Res 5: 133–138, 1987.PubMedGoogle Scholar
  40. 40.
    Muir JHM: Biochemistry. In: Adult Articular Cartilage, 2nd ed. MAR Freeman (ed), Tunbridge Wells: Pitman Medical, p 145–214, 1979.Google Scholar
  41. 41.
    Eyre DR, Wu JJ, Apone S: A growing family of collagens in articular cartilage: Identification of 5 genetically distinct types. J Rheumatol 14 (Suppl): 25–27, 1987.PubMedGoogle Scholar
  42. 42.
    Keene DR, Sakay LY, Bächinger HP, Burgeson RE: Type III collagen can be present on banded collagen fibrils regardless of fibril diameter. J Cell Biol 105: 2393–2402, 1987.PubMedGoogle Scholar
  43. 43.
    Birk DE, Fitch JM, Barbiarz JP, Linsenmayer TF: Collagen type I and type V are present in the same fibril in the avian corneal stroma. J Cell Biol 106: 999–1008, 1988.PubMedGoogle Scholar
  44. 44.
    Eyre D, Wu JJ: Type XI or la 2a 3a- collagen. In: Structure and Function of Collagen Types. R Mayne, RE Burgeson (eds), Orlando, FL: Academic Press, p 261–282, 1987.Google Scholar
  45. 45.
    Vaughan L, Mendler M, Huter S, Bruckner P, Winterhalter K, Irwin M, Mayne R: D-periodic distribution of collagen type IX along cartilage fibrils. J Cell Biol 106: 991–997, 1988.PubMedGoogle Scholar
  46. 46.
    van der Rest M, Mayre R: Type IX collagen proteoglycan from cartilage is covalently cross-linked to type II collagen. J Biol Chem 263: 1615–1618, 1988.PubMedGoogle Scholar
  47. 47.
    van der Rest M, Mayne R: Type IX collagen. In: Structure and Function of Collagen Types. RE Burgeson (ed), Orlando FL: Academic Press, p 195–221, 1987.Google Scholar
  48. 48.
    Schmid TM, Linsenmayer TF: A short chain (pro) collagen from aged endochondral chondrocytes. Biochemical characterization. J Biol Chem 258: 9504–9509, 1983.PubMedGoogle Scholar
  49. 49.
    Schmid TM, Linsenmayer TF: Developmental acquisition of type X collagen in the embryonic chick tibiotarsus. Development Biol 107: 373–381, 1985.Google Scholar
  50. 50.
    Schmid TM, Linsenmayer TF: Type X collagen. In: R Mayne, RE Burgeson (eds), Structure and Function of Collagen Types. Orlando FL: Academic Press, p 223–260, 1987.Google Scholar
  51. 51.
    Hascall VC, Riolo RL: Characteristics of the proteinkeratan sulfate core and of keratan sulfate prepared from bovine nasal cartilage proteoglycan. J Biol Chem, 247: 4529–4538, 1972.PubMedGoogle Scholar
  52. 52.
    Heinegard D, Franzen A, Hedborn E, Sommarin Y: Common structures of the core proteins of interstitial proteoglycans. In: Functions of the Proteoglycans. CIBA Foundation Symposium. 124. New York: John Wiley and Sons, p 69–82, 1986.Google Scholar
  53. 53.
    Buckwalter JA, Rosenberg LC: Electron microscopic studies of cartilage proteoglycans. Electron Microsc Rev 1: 87–112, 1986.Google Scholar
  54. 54.
    Hascall VC: Interaction of cartilage proteoglycans with hyaluronic acid. J Supramolec Struct 7: 101–120, 1977.Google Scholar
  55. 55.
    Hardingham TE, Muir H: Binding of oligosaccharides of hyaluronic acid to proteoglycans. Biochem J 135: 905–908, 1973.PubMedGoogle Scholar
  56. 56.
    Kimura JH, Hardingham TE, Hascall VC: Assembly of newly synthesized proteoglycan and link protein into aggregates in cultures of chondrosarcoma chondrocytes. J. Biol Chem 225: 7134–7143, 1980.Google Scholar
  57. 57.
    Swann DA, Powell S, Sotman S: The heterogeneity of cartilage proteoglycans. J Biol Chem 154: 945–954, 1979.Google Scholar
  58. 58.
    Rosenberg LC, Choi HU, Poole AR, Lewandowska K. Culp LA: Biological roles of dermatan sulphate proteoglycans. In: Functions of the Proteoglycans. CIBA Foundation Symposium 124, New York: John Wiley and Sons, p 47–68, 1986.Google Scholar
  59. 59.
    Rosenberg L, Tang L, Choi H: Isolation, characterization and immunohistochemical localization of a dermatan sulfate-containing proteoglycan from bovine fetal epiphyseal cartilage. In: Limb Development and Regeneration. part B. New York: RV Kelly (ed) Alan R Liss, p 67–84, 1983.Google Scholar
  60. 60.
    Rosenberg LC, Choi HU, Tang LH: Isolation of dermatan sulfate proteoglycans from mature bovine articular cartilages. J Biol Chem 260: 6304–6313, 1985.PubMedGoogle Scholar
  61. 61.
    Hascall VC: Proteoglycans: Structure and function. In: Biology of Carbohydrates. V Ginsberg, P Robbins (ed). New York: John Wiley and Sons, p 1–48, 1981.Google Scholar
  62. 62.
    Hascall VC, Lowther DA: Components of the organic matrix: Proteoglycans. In: Biological Mineralization and Demineralization. GH Nancollas, (ed), Dahlem-Konferenzen. Berlin: Springer Verlag, p 179–198, 1982.Google Scholar
  63. 63.
    Hunziker EB, Herrmann W, Cruz-Orive LM, Arsenault AL: Image analysis of electron micrographs relating to mineralization in calcifying cartilage. J Electron Microsc Techn, 11: 9–15, 1989.Google Scholar
  64. 64.
    Scott JE: Contributions of light and electron histochemical techniques to the study of proteoglycan function in cartilage. Acta Biol Hung 35: 227–232, 1984.PubMedGoogle Scholar
  65. 65.
    Scott JE: Proteoglycan-collagen interactions. In: Functions of the Proteoglycans. CIBA Foundation Symposium 124. New York: John Wiley and Sons, p 104–124, 1986.Google Scholar
  66. 66.
    Hunziker EB, Schenk RK: Cartilage ultrastructure after high pressure freezing, freeze substitution, and low temperature embedding. II Intercellular matrix ultrastructure preservation of proteoglycans in their native state. J Cell Biol 98: 277–282, 1984.PubMedGoogle Scholar
  67. 67.
    Goetinck PF, Stirpe NS, Tsonis PA, Carlone D: The tandemly repeated sequences of cartilage link protein contain the sites for interaction with hyaluronic acid. J Cell Biol 105: 2403–2408, 1987.PubMedGoogle Scholar
  68. 68.
    Poole AR, Pidoux J, Riener A, Rosenberg L: An immunelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage. J Cell Biol 93: 921–937. 1982.PubMedGoogle Scholar
  69. 69.
    Hewitt AT, Varner HH, Silver MH: The role of chondronectin and cartilage proteoglycan in the attachment of chondrocytes to collagen. In: Limb Development and Regeneration: Part B. RO Kelly, PF Goetinck. JA MacCabe (eds), New York: Alan R. Liss, p 25–33, 1982.Google Scholar
  70. 70.
    Choi HU, Tang LH, Jonson TL, Pal S, Rosenberg L. Reiner A, Poole AR: Isolation and characterization of a 35,000 molecular weight fetal cartilage matrix protein. J Biol Chem 258: 655–661, 1983.PubMedGoogle Scholar
  71. 71.
    Poole AR, Pidoux J, Reiner H, Choi H, Rosenberg LC: Association of an extracellular protein (chondrocalcin) with the calcification of cartilage in endochondral bone formation. J Cell Biol 98: 54–65, 1984.PubMedGoogle Scholar
  72. 72.
    Erickson HP, Taylor HC: Hexabrachion proteins in embryonic chicken tissues and human tumors. J Cell Biol 105: 1387–1394, 1987.PubMedGoogle Scholar
  73. 73.
    Mackie EJ, Thesleff J, Chiquet-Ehrismann R: Tenascin is associated with chondrogenic and osteogenic differentiation in vivo and promotes chondrogenesis in vitro. J Cell Biol 105: 2569–2579, 1987.PubMedGoogle Scholar
  74. 74.
    Brighton CT, Sugioka Y, Hunt RM: Cytoplasmic structures of epiphyseal plate chondrocytes. J Bone Joint Surg 55: 771–784, 1973.PubMedGoogle Scholar
  75. 75.
    Eggli PS, Hunziker EB, Schenk RK. Quantitation of structural features characterizing weight- and less weight- bearing regions in articular cartilage. Anat Rec 222: 217–227, 1988.PubMedGoogle Scholar
  76. 76.
    Stockwell RA: Biology of cartilage cells. Cambridge: Cambridge University Press, p 21–25, 1979.Google Scholar
  77. 77.
    McClure J, Bates GP, Rowston H, Grant M: A comparison of the morphological, histochemical and biochemical features of embryonic chick sternal chondrocytes in vivo with chondrocytes cultured in three-dimensional collagen gels. Bone Mineral 3: 235–247, 1988.Google Scholar
  78. 78.
    Brighton CT: Structure and function of the growth plate. Clin Orthop Rel Res 136: 22–32, 1978.Google Scholar
  79. 79.
    Engfeldt B: Studies on the epiphyseal growth zone. Acta Pathol Microbiol Scand 75: 201–219, 1969.PubMedGoogle Scholar
  80. 80.
    Kember NF: Cell kinetics and the control of growth in long bones. Cell Tissue Kinet 11: 477–485, 1978.PubMedGoogle Scholar
  81. 81.
    Kember NF: Cell kinetics of cartilage. In: Cartilage — Structure, Function and Biochemistry. BK Hall (ed). New York: Academic Press, p 149–180, 1983.Google Scholar
  82. 82.
    Cowell HR, Hunziker EB, Rosenberg L: The role of hypertrophic chondrocytes in endochondral ossification and in development of secondary centers of ossification. J Bone Joint Surg 69: 159–161, 1987.PubMedGoogle Scholar
  83. 83.
    Lutfi AM: The germinal zone of the growth cartilage at the upper ends of the tibia and fibula in gallus domes- ticus. J Anat 106: 565–576, 1970.PubMedGoogle Scholar
  84. 84.
    Lutfi AM: Mode of growth, fate and functions of car¬tilage canals. J Anat 106: 135–145, 1970.PubMedGoogle Scholar
  85. 85.
    Ranz FB, Aceitero J, Gaytan F: Morphometric study of cartilage dynamics in the chick embryo tibia. J Anat 154: 73–79, 1987.PubMedGoogle Scholar
  86. 86.
    Lutfi AM: 35-S-Sulphate uptake by the growing tibia in the domestic fowl. J Anat 107: 567–576, 1970.Google Scholar
  87. 87.
    Howlett CR: The fine structure of the proximal growth plate and metaphvsis of the avian tibia: Endochondral osteogenesis. J Anat 130: 745–768, 1980.PubMedGoogle Scholar
  88. 88.
    Weiss C. Rosenberg L: An ultrastructural study of normal young adult human articular cartilage. J Bone Joint Surg 50: 663–674. 1968.PubMedGoogle Scholar
  89. 89.
    Silberberg R: Ultrastructure of articular cartilage in health and disease. Clin Orthop Rel Res 57: 233–257. 1968.Google Scholar
  90. 90.
    Lane L, Bullough PF: Age-related changes in the thick¬ness of the calcified zone and the number of tidemarks in adult human articular cartilage. J Bone Joint Surg 62: 372–375, 1980.Google Scholar
  91. 91.
    Muller-Gerbl M, Schulte E, Pulz R: The thickness of the calcified layer of articular cartilage: A function of the load supported? J Anat 154: 103–111, 1987.PubMedGoogle Scholar
  92. 92.
    Zanetti M. Ratcliffe A. Watt FM: Two subpopulations of differentiated chondrocytes identified with a monoclonal antibody to keratan sulfate. J Cell Biol 104: 53–59, 1985.Google Scholar
  93. 93.
    Bavliss MT, Venn M, Maroudas A, Ali SY: Structure of proteoglycans from different layers of human articular cartilage. J Biochem 209: 387–400, 1983.Google Scholar
  94. 94.
    Poole AR: Complexity of proteoglycan organization in articular cartilage: Recent observations. J Rheumatol 11 (Suppl): 10: 70–78, 1983.Google Scholar
  95. 95.
    Poole AR, Rosenberg LC: Proteoglycans, chondrocalcin, and the calcification of cartilage matrix in endochondral ossification. In: Biology of Proteoglycans. TM Wight, RP Mecham (eds), Orlando FL: Academic Press, p 187–210, 1987.Google Scholar
  96. 96.
    Hunziker EB, Herrmann W: The effect of various cationic dyes, chemically related to ruthenium hexamminetrichloride, upon the preservation quality of cartilage during fixation. In preparation.Google Scholar
  97. 97.
    Reinholt FB, Engfeldt B, Hjerpe A, Jansson K: Stereological studies on the epiphyseal growth plate with special reference to the distribution of matrix vesicles. J Ultrastr Res 80: 270–279, 1982.Google Scholar
  98. 98.
    Arsenault AL, Hunziker EB: Electron microscopic analysis of mineral deposits in the calcifying epiphyseal growth plate. Calcif Tissue Int, 42: 119–126, 1988.PubMedGoogle Scholar
  99. 99.
    Boskey AL: Models of matrix vesicle calcification. Inorganic Perspectives in Biology and Medicine 2: 51–92, 1979.Google Scholar
  100. 100.
    Moergelin M, Paulsson M, Hardingham TE, Heinegard D, Engel J: Cartilage proteoglycans. Assembly with hyaluronate and link protein as studied by electron microscopy. Biochem J 253: 175–185, 1988.Google Scholar
  101. 101.
    Arsenault AL, Grynpas MD: Crystals in calcified epiphyseal cartilage and cortical bone of the rat. Calcif Tissue Int 43: 219–225, 1988.PubMedGoogle Scholar
  102. 102.
    Arsenault AL Ottensmeyer FP, Heath JB: An electron microscopic and spectroscopic study of murine epiphyseal cartilage: Analysis of fine structure and matrix vesicles preserved by slam freezing and freeze substitution. J Ultrastr Molec Struct Res 98: 32–47, 1988.Google Scholar
  103. 103.
    Bonucci E: Fine structure of early cartilage calcification. J Vltrastr Res 20: 33–50, 1967.Google Scholar
  104. 104.
    Anderson HC: Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol 41: 59–67, 1969.PubMedGoogle Scholar
  105. 105.
    Miiller-Glauser W, Humbel B, Glatt M, Strauli P, Winterhalter K, Bruckner P: On the role of type IX- collagen in the extracellular matrix of cartilage: Type IX collagen is localized to intersections of collagen fibrils. J Cell Biol 102: 1931–1939, 1986.Google Scholar
  106. 106.
    Schenk RK, Olah AJ, Hermann W: Preparation of calcified tissues for light microscopy. In: Methods of Calcified Tissue Preparation. GR Dickson (ed), Amsterdam: Elsevier, p 1–56, 1984.Google Scholar
  107. 107.
    Preston BN, Swowden JM: Model connective tissue systems: The effect of proteoglycans on the diffusional behaviour of small non-electrolytes and micro ions. Biopolymers 11: 1627–1643, 1972.PubMedGoogle Scholar
  108. 108.
    Mendler M. Eich-Bendler SG, Vaughan L. Winterhalter KH. Bruckner P: Cartilage contains mixed fibrils of collagen types II, IX and XI. J Cell Biol 108: 191–197, 1989.PubMedGoogle Scholar
  109. 109.
    Nivibizi C, Eyre DR: Identification of the cartilage la (XI) chain in type V collagen from bovine bone. FEBS Lett 242: 314–318, 1989.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  1. 1.M.E. Muller Institute for BiomechanicsUniversity of BernBernSwitzerland

Personalised recommendations