The original contributions of the scanning electron microscope to the knowledge of bone structure

Part of the Electron Microscopy in Biology and Medicine book series (EMBM, volume 7)


When the scanning electron microscope (SEM) was marketed in the sixties, it was regarded by biologists with much skepticism. And, as a matter of fact, for some years it appeared unable to offer much more than a mere three-dimensional visualization of structures whose morphology had already been deduced from two-dimensional studies with the light microscope (LM) and the transmission electron microscope (TEM). For this reason, the SEM was felt to be an instrument more suited to didactic purposes than to research.


Matrix Vesicle Lamellar Bone Osteocyte Lacuna Secondary Osteons Ordinary Light Microscope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boyde A: Scanning electron microscope studies of bone. In: The Biochemistry and Physiology of Bone. GH Bourne (ed), New York: Academic Press, p 259–310, 1972.Google Scholar
  2. 2.
    Sela J, Boyde A: Further observations on the relationship between the matrix and the calcifying fronts in osteosarcoma. Virchows Arch [A] 376: 175–180, 1977.Google Scholar
  3. 3.
    Sela J, Bab IA: The relationship between extracellular matrix vesicles and calcospherites in primary mineralization of neoplastic bone tissue. Virchows Arch [Aj 382: 1–9, 1979.Google Scholar
  4. 4.
    Boyde A: Electron microscopy of the mineralization front. Metab Bone Dis Rel Res 2S: 69–78, 1980.Google Scholar
  5. 5.
    Ornoy AP, Zusman I, Atkin I: Scanning and transmission electron microscopic studies of matrix vesicles in cartilage and bone of young rats and mice. In: Matrix Vesicles. A Ascenzi, E Bonucci, B de Bernard (eds), Milano: Wichtig, p 13–18, 1981.Google Scholar
  6. 6.
    Jones SJ: Secretory territories and rate of matrix production of osteoblasts. Calcif Tissue Res 14: 309–315, 1974.PubMedGoogle Scholar
  7. 7.
    Jones SJ, Boyde A, Pawley JB: Osteoblasts and collagen orientation. Cell Tissue Res 159: 73–80, 1975.PubMedGoogle Scholar
  8. 8.
    Jones SJ, Boyde A, Ness AR: SEM studies of osteoblasts: Size, shape and anisotropy in relation to hormonal status in organ culture. In: Bone Histomorphometry. PJ Meunier (ed), Paris: Armour-Montagu, p 275–289, 1977.Google Scholar
  9. 9.
    Matthews JL, Talmage RV, Martin JH, Davies WL: Osteoblasts, bone lining cells and the bone fluid compartment. In: Bone Histomorphometry. PJ Meunier (ed), Paris: Armour-Montagu, p 239–247, 1977.Google Scholar
  10. 10.
    Matthews JL, Talmage RV, Doppelt R: Responses of the osteocyte lining cell complex, the bone cell unit to calcitonin. Metab Bone Dis Rel Res 2: 113–122, 1980.Google Scholar
  11. 11.
    Ornoy A, Atkin I, Levy J: Ultrastructural studies on the origin and structure of matrix vesicles in bone of young rats. Acta Anat 106: 450–461, 1980.PubMedGoogle Scholar
  12. 12.
    Wink CS: A scanning electron-microscopic study of femoral bone surfaces from castrate rats treated with dichloromethylene biphosphonate. Acta Anat 126: 57–62, 1986.PubMedGoogle Scholar
  13. 13.
    Deldar A, Lewis H, Weiss L: Bone lining cells and hematopoiesis: An electron microscopic study of canine bone marrow. Anat Rec 213: 187–201, 1985PubMedGoogle Scholar
  14. 14.
    Jones SJ, Boyde A: Some morphological observations on osteoclasts. Cell Tissue Res 185: 387–397, 1977.PubMedGoogle Scholar
  15. 15.
    Krempien B, Klimpel F: Scanning electron microscopical studies of resorbing surfaces. Metab Bone Dis Rel Res 2S: 45–51, 1980.Google Scholar
  16. 16.
    Ream LJ, Pendergrass PB: Scanning electron micro¬scopy of the epiphyseal plate and metaphysis of the rat after short term fluoride ingestion. J Submicrosc Cytol 14: 73–80, 1982.PubMedGoogle Scholar
  17. 17.
    Jones SJ, Boyde A, Ali NN: The resorption of biological and non-biological substrates by cultured avian and mammalian osteoclasts. Anat Embryol 170: 247–256, 1984.PubMedGoogle Scholar
  18. 18.
    Chappard D, Alexandre C, Laborier JC, Robert JM, Riffat G: Paget’s disease of bone. A scanning electron microscopic study. J Submicrosc Cytol 16: 341–348, 1984.PubMedGoogle Scholar
  19. 19.
    Chambers TJ, Darby JA, Fuller K: Mammalian collagenase predisposes bone surfaces to osteoclastic resorption. Cell Tissue Res 241: 671–675, 1985.PubMedGoogle Scholar
  20. 20.
    Jones SJ, Ali NN, Boyde A: Survival and resorptive activity of chick osteoclasts in culture. Anat Embryol 174: 265–275, 1986.PubMedGoogle Scholar
  21. 21.
    Reid SA: Effect of mineral content of human bone on in vitro resorption. Anat Embryol 174: 225–234, 1986.PubMedGoogle Scholar
  22. 22.
    Marotti G: Decrement in volume of osteoblasts during osteon formation and its effect on the size of the corresponding osteocytes. In: Bone Histomorphometry. PJ Meunier (ed), Paris: Armour Montagu, p 385–397, 1977.Google Scholar
  23. 23.
    Marotti G: Osteocyte orientation in human lamellar bone and its relevance to the morphometry of periosteocytic lacunae. Metab Bone Dis Rel Res 1: 325–333, 1979.Google Scholar
  24. 24.
    Marotti G: Three dimensional study of osteocyte lacunae. In: Bone Histomorphometry. WSS Jee, AM Parfitt (eds), Paris: Armour Montagu, p 223–229, 1981.Google Scholar
  25. 25.
    Cane V, Marotti G, Volpi Zaffe D, Palazzini S, Remaggi F, Muglia MA: Size and density of osteocyte lacunae in different regions of long bones. Calcif Tissue Int 34: 558–563, 1982.PubMedGoogle Scholar
  26. 26.
    Baud CA: Morphology and inframicroscopic structure of osteocytes. Acta Anat 51: 209–225, 1962.PubMedGoogle Scholar
  27. 27.
    Chappard D, Laurent JL, Laborier JC, Alexandre C, Riffat G: A corrosion-casting method for scanning electron microscopy of osteon canals, osteoplasts and interosteoplast connections. Biol Cell 44: 77–80, 1982.Google Scholar
  28. 28.
    Curtis TA, Ashrafi SH, Weber DF: Canalicular communication in the cortices of human long bones. Anat Rec 212: 336–344, 1985.PubMedGoogle Scholar
  29. 29.
    Boyde A: Evidence against “osteocytic osteolysis.” In: Bone Histomorphometry. WSS Jee, AM Parfitt (eds), Paris: Armour Montagu, p 239–255, 1981.Google Scholar
  30. 30.
    Marotti G, Remaggi F, Zaffe D: Quantitative investigation on osteocyte canaliculi in human compact and spongy bone, Bone 6: 335–337, 1985.PubMedGoogle Scholar
  31. 31.
    Palumbo C: A three-dimensional ultrastructure study of osteoid-osteocytes in the tibia of chick embryos. Cell Tissue Res 246: 125–131, 1986.PubMedGoogle Scholar
  32. 31.
    Palumbo C: A three-dimensional ultrastructure study of osteoid-osteocytes in the tibia of chick embryos. Cell Tissue Res 246: 125–131, 1986.PubMedGoogle Scholar
  33. 33.
    Arnold JS, Frost HM, Buss RO: The osteocyte as a bone pump. Clin Orthop 78: 47–55, 1971.PubMedGoogle Scholar
  34. 34.
    Frost HM: The osteocyte as a water pump. In: Bone Modeling and Skeletal Modeling Errors. Springfield, IL: Charles C. Thomas, p 119–150, 1973.Google Scholar
  35. 35.
    Bassett CAL: Electro-mechanical factors regulating bone architecture. In: Calcified Tissues 1965. H Fleisch, HJJ Blackwood, M Owen (eds), Berlin: Springer-Verlag, p 78–89, 1966.Google Scholar
  36. 36.
    Bassett CAL: Biophysical principles affecting bone structure. In: The Biochemistry and Physiology of Bone. GH Bourne (ed) New York: Academic Press, p 1–76, 1971.Google Scholar
  37. 37.
    Frost HM: Micropetrosis. J Bone Joint Surg 42A: 144–150, 1960.PubMedGoogle Scholar
  38. 38.
    Frost HM: Mechanical microdamage, bone remodeling and osteoporosis. A review. In: Osteoporosis. HF De Luca, HM Frost, WSS Jee, CC Johnston Jr, AM Parfitt (eds), Baltimore: University Park Press, p 185–190. 1981.Google Scholar
  39. 39.
    Rigal A, Vignal W: Recherches expérimentales sur la formation du cal et sur les modifications des tissus dans les pseudoarthroses. Arch Physiol 8: 419–458, 1881.Google Scholar
  40. 40.
    Von Recklinghausen F: Untersuchungen über Rachitis und Osteomalacia. Gustav Fisher Jena, 1910.Google Scholar
  41. 41.
    Heller-Steinberg M. Ground substance, bone salts and cellular activity in bone formation and destruction. Am J Anat 89: 374–379, 1951.Google Scholar
  42. 42.
    Lorber M: A study on the histochemical reactions of the dental cementum and alveolar bone. Anat Ree 111: 129–144, 1951.Google Scholar
  43. 43.
    Lipp W: Neuuntersuchungen des Knochengewebes. Acta Anat 20: 162–200, 1954.PubMedGoogle Scholar
  44. 44.
    Baud CA, Slatkine SW: Aspect microscopiques et sub-microscopiques des ostéoplastes du tissu osseux compact. Bull Micr Appl 11: 73–76, 1961.Google Scholar
  45. 45.
    Jande SS: Fine structural study of osteocytes and their surrounding bone matrix with respect to their age in young chicks. J Ultrastruct Res 37: 279–300, 1971.PubMedGoogle Scholar
  46. 46.
    Jande SS: Effects of parathormone on osteocytes and their surrounding bone matrix: An electron microscopic study. Z Zellforsch 130: 463–470, 1972.PubMedGoogle Scholar
  47. 47.
    Tonna EA: Electron microscopic evidence of alternating osteocytic osteoclastic and osteoplastic activity in the perilacunar walls of aging mice. Connective Tissue Res 1: 221–230, 1972.Google Scholar
  48. 48.
    Baud CA, Boivin G: Effects of hormones on osteocyte function and perilacunar wall structure. Clin Orthop 136: 270–281, 1978.PubMedGoogle Scholar
  49. 49.
    Luk SC, Nopajaroonsri C, Simon GT: The ultrastructure of cortical bone in young adult rabbits. J Ultrastruct Res 46: 184–205, 1974.PubMedGoogle Scholar
  50. 50.
    Krempien B: Osteocyte activation; hormonal and mec¬hanical factors. In: Bone Histomorphometry. WSS Jee, AM Parfitt (eds), Paris: Armour-Montagu, p 257–268, 1981.Google Scholar
  51. 51.
    Palazzini S, Palumbo C: Indagini sull’ultrastruttura di osteociti maturi in rapporto al metabolismo del tessuto osseo: Osservazioni preliminari. Atti Soc Ital Anat 16: 20, 1986.Google Scholar
  52. 52.
    Palazzini S, Palumbo C: Differenze ultrastrutturali tra osteociti nell’osso compatto e nell’osso spugnoso. Atti Soc Ital Anat 17: 67, 1987.Google Scholar
  53. 53.
    Bélanger LF, Robichon J, Migicovsky BB, Copp DH, Vincent J: Resorption without osteoclasts (osteolysis). In: Mechanism of Hard tissue Destruction. RF Sognnaes (ed), Washington DC: Assoc Adv Sci, p 531–556, 1963.Google Scholar
  54. 54.
    Bélanger LF, Migicovsky BB: Histochemical evidence of proteolysis in bone: The influence of parathormone. J Histochem Cytochem 11: 734–737, 1963.Google Scholar
  55. 55.
    Bélanger LF, Semba T, Tolnai S, Copp DH, Krook L, Gries C: The two faces of resorption. In: Calcified Tissues 1965. H Fleisch, HJJ Blackwood, M Owen (eds). Berlin: Springer-Verlag p 1–10, 1966.Google Scholar
  56. 56.
    Bélanger LF, Clark I: Alpharadiographic and histological observations on the skeletal effects of hypervitaminoses A and D in the rat. Anat Ree 158: 443–451, 1967.Google Scholar
  57. 57.
    Bélanger LF: Osteocytic osteolysis. Calcif Tiss Res 4: 1–12, 1969.Google Scholar
  58. 58.
    Duriez J, Ghosez JP, Flautre B: La résorption ou lyse périostéocytaire et son rôle possible dans la destruction du tissus osseux. Presse Méd 73: 2581–2585, 1965.PubMedGoogle Scholar
  59. 59.
    Baud CA, Auil E: Osteocyte differential count in normal human alveolar bone. Acta Anat 78: 321–327, 1971.PubMedGoogle Scholar
  60. 60.
    Meunier PJ, Bernard J, Vignon G: The measurement of periosteocytic enlargement in primary and secondary hyperparathyroidism. Israel J Med Sci 3: 482–485, 1971.Google Scholar
  61. 61.
    Meunier PJ, Bernard J, Coupron P, Vignon G: Use of an image analyzing computer for the study of osteocytic behaviour in bone diseases. In: Proc IX Eur Symp on Cale Tiss Wien: Facta-Publication, p 203–208, 1973.Google Scholar
  62. 62.
    Rasmussen H, Bordier P: The physiological and cellular basis of metabolic bone disease. Baltimore: Williams and Wilkins, 1974.Google Scholar
  63. 63.
    Duriez J: Le modifications calciques périostéocytaires. Etude microradiographique à l’analyseur automatique d’images. Nouv Press Méd 3; 2007–2010, 1974.Google Scholar
  64. 64.
    Yeager VL, Chiemchanya S, Chaiseri P: Changes in size of lacunae during the life of osteocytes in osteons of compact bone. J Gerontol 30: 9–14, 1975.PubMedGoogle Scholar
  65. 65.
    Krempien B, Ritz E, Geiger G: Behaviour of osteocytes in various ages and chronic uremia. Morphological studies in human cortical bone. In: Proc. 1st Workshop on Bone Morphometry. ZFG Jaworski (ed), Ottawa: University of Ottawa Press, p 288–296, 1976.Google Scholar
  66. 66.
    Lok E, Jaworski ZFG: Changes in the periosteocytic lacunae size observed under experimental conditions in adult dog. In: Proc. 1st Workshop on Bone Morphometry. ZFG Jaworski (ed), Ottawa: University of Ottawa Press, p 297–300, 1976.Google Scholar
  67. 67.
    Meunier PJ, Bernard J: Morphometric analysis of per- iosteocytic osteolysis. In: Proc. 1st Workshop on Bone Morphometry. ZFG Jaworski (ed), Ottawa: University of Ottawa Press, p 279–287, 1976.Google Scholar
  68. 68.
    Boivin G, Baud CA: La morphométrie des lacunes périostéocytaires. Acta Anat 99: 356, 1977.Google Scholar
  69. 69.
    Manegold CH, Krempien B: The influence of immobilization on osteocyte morphology. In: Bone Histomorphometry. PJ Meunier (ed), Paris: Armour-Montagu, p 419–428, 1977.Google Scholar
  70. 70.
    Marotti G, Ledda M, Delrio N, Fadda M: Quantitative analysis of osteolytic versus osteoclastic activity in various experimental osteoporoses. 1. Disuse osteoporosis. Calcif Tissue Res 22 (Suppl): 242–246, 1977.PubMedGoogle Scholar
  71. 71.
    Marotti G, Delrio N, Marotti F, Fadda M: Quantitative analysis of the bone destroying activity of osteocvtes and osteoclasts in experimental disuse osteoporosis, Ital J Orthop Traumatol 5: 235–251, 1979.Google Scholar
  72. 72.
    Muglia MA, Volpi G, Remaggi F, Canè V, Palazzini S, Zaffe D, Marotti G: Activity of osteoclasts and osteocytes in compact human bone at various ages, both with and without osteoporosis, Ital J Orthop Traumatol 8: 117 - 125, 1982.PubMedGoogle Scholar
  73. 73.
    Marotti G, Remaggi F, Palazzini S: Morphology of osteocyte lacunae and collagen texture in bovine fluorotic bone. Calcif Tissue Int 33 (Suppl): 100, 1981.Google Scholar
  74. 74.
    Palazzini s, Muglia MA, Remaggi F, Cane V, Zaffe D, Marotti G: A SEM study of bovine fluorotic bone. Versammlung der Anatomischen Gesellschaft, 78, 1983.Google Scholar
  75. 75.
    Palazzini S, Remaggi F, Zaffe D, Muglia MA, Canè V, Marotti G: Modificazioni della struttura dell’osso osteonico nella fluorosi industriale. Arch Ital Anat Embrxol 88: 115 - 130, 1984.Google Scholar
  76. 76.
    Sissons HA, Kelman GJ, Marotti G: Mechanism of bone resorption in calcium-deficient rats. Calcif Tissue Int 36: 711 - 721, 1984.PubMedGoogle Scholar
  77. 77.
    Sissons HA, Kelman GJ, Marotti G: Bone resorption in calcium-deficient rats. Bone 6: 345 - 347, 1985.PubMedGoogle Scholar
  78. 78.
    Marotti G, Cane V, Sissons HA, Ling L, Kelman GJ: A light and scanning electron microscopic study of osteocyte activity in calcium-deficient rats. Calcif Tissue Int 39 (Suppl): 28, 1986.Google Scholar
  79. 79.
    Boivin G, Baud CA: Osteocyte lacunae of fluorotic bone tissue: Microradiographic, ultrastructural and morphometric studies. In: Fluoride and Bone. B Courvoisier, A Donath, CA Baud (eds), Médicine et Hvgiène Genève, 290 - 292, 1978.Google Scholar
  80. 80.
    Baud CA, Boivin G: Osteocytic miniremodeling in animals and man. In: Bone Histomorphometry. WSS Jee, AM Parfitt (eds), Paris: Armour-Montagu, p 231 - 237, 1981.Google Scholar
  81. 81.
    Solomon CD, Volpin G: Fine structure of bone resorption in experimental osteoporoses caused by calcium deficient diet in rats. An electron microscopic study of compact bone. Calcif Tissue Res Suppl: 80 - 82, 1970.Google Scholar
  82. 82.
    Solomon CD: Osteoporosis following calcium deficiency in rats. Calcif Tissue Res 23: 236 - 347, 1972.Google Scholar
  83. 83.
    Wassermann F, Yaeger JA: Fine structure of the osteocyte capsule and the wall of the lacunae in bone. Z Zellforsch 67: 636–652, 1965.Google Scholar
  84. 84.
    Bonucci E, Gherardi G: Osteocyte ultrastructure in renal osteodystrophy. Virchows Arch [A] 373: 213–231, 1977.Google Scholar
  85. 85.
    Kilian HF: Das Halisteresische Becken. Bonn 1857.Google Scholar
  86. 86.
    Bohatirchuk F: Calciolvsis as the initial stage of bone resorption (A stain historadiographic study). Am J Med 41: 836–846, 1966.PubMedGoogle Scholar
  87. 87.
    Marotti G. Balli R, Remaggi F, Farneti D: Studio morfofunzionale sugli osteociti negli ossicini timpanici in condizioni normali. Acta Otorhinol Ital 7: 347–363, 1987.Google Scholar
  88. 88.
    Frost HM: In vivo osteocyte death. J Bone Joint Surg 42A: 138–143, 1960.PubMedGoogle Scholar
  89. 89.
    Smith JW: Arrangement of collagen fibres in human secondary osteons. J Bone Joint Surg 42B: 588–605, 1960.Google Scholar
  90. 90.
    Havers C: Osteológica Nova. London. 1691.Google Scholar
  91. 91.
    Gebhardt W: Über funktionell wichtige Anordnungsweisen der feineren und gröberen Bauelemente des Wiberltierknochens. II. Spezieller Teil. Der Bau der haversschen Lamellensysteme und seine funktionelle Bedeutung. Arch Entw Mech Org 20: 187–322, 1906.Google Scholar
  92. 92.
    Ebner von V: Sind die Fibrillen des Knochengewebes verkalt oder nicht? Arch Mikrosk Anat 29: 213–236, 1887.Google Scholar
  93. 93.
    Weidenreich F: I. Teil: Über Aufbau und Entwicklung des Knochens und den Charakter des Knochengewebes. Zeitschrift für Anat und Entwick 69: 382–466, 1923.Google Scholar
  94. 94.
    Ranvier J: Traité Technique d’Histologie, 2nd ed. Paris: Savy, 1889.Google Scholar
  95. 95.
    Ziegler O: Studien über die feinere Struktur des Röhrenknochens und dessen Polarisation. Dtsch Z Chir 85: 248–263, 1908.Google Scholar
  96. 96.
    Ruth EB: Bone studies. I. Fibrillar structure of adult human bone. Am J Anat 80: 35–53, 1947.PubMedGoogle Scholar
  97. 97.
    Rouillcr C. Huber L, Kellenberger E, Rutishauser E: La structure lamellaire de Tostéone. Acta Anat 14: 9–22, 1952.Google Scholar
  98. 98.
    Rouiller C: Collagen fibres in connective tissue. In: The Biochemistry and Physiology of Bone. GH Bourne (ed). New York: Academic Press, p 104–147, 1956.Google Scholar
  99. 99.
    Frank R, Frank P, Klein M, Fontaine R: L’os compact humain normal au microscope electronique. Archives Anat Micr Morph Exp 44: 193–206, 1955.Google Scholar
  100. 100.
    Boyde A, Hobdell MH: Scanning electron microscopy of lamellar bone. Z Zellforsch 93: 213–231, 1969.PubMedGoogle Scholar
  101. 101.
    Amprino R, Bairati A: Processi di ricostruzione e di riassorbimento nella sostanza compatta delle ossa dell’uomo. Ricerche su cento soggetti dalla nascita sino a tarda età. Z Zellforsch 24: 439–511, 1936.Google Scholar
  102. 102.
    Weimann JP, Sicher H: Bone and Bones. Fundamentals of Bone Biology. London: H. Kimpton, 1947.Google Scholar
  103. 103.
    Lacroix P. The Organization of Bone. London: J & A Churchill, 1951.Google Scholar
  104. 104.
    McLean FC, Urist MR: Bone: An Introduction to the Physiology of Skeletal Tissue. Chicago: University of Chicago Press, 1955.Google Scholar
  105. 105.
    Pritchard JJ: General Anatomy and Histology of Bone. In: The Biochemistry and Physiology of Bone. GH Bourne (ed), New York: Academic Press, p 1–25, 1956.Google Scholar
  106. 106.
    Ascenzi A, Bonucci E, Bocciarelli DS An electron microscope study of osteon calcification. J Ultrastruct Res 12: 287–303, 1965.PubMedGoogle Scholar
  107. 107.
    Ascenzi A, Benvenuti A: Orientation of collagen fibers at the boundary between two successive osteonic lamellae and its mechanical interpretation. J Biomechanics 19: 455–463, 1986.Google Scholar
  108. 108.
    Giraud-Guille MM: Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif Tissue Int 42: 167–180, 1988.PubMedGoogle Scholar
  109. 109.
    Ascenzi A, Bigi A, Ripamonti A, Roveri N: X-ray dif¬fraction analysis of transversal osteonic lamellae. Calcif Tissue Int 35: 279–283, 1983.PubMedGoogle Scholar
  110. 110.
    Ascenzi A, Bigi A, Koch MH, Ripamonti A, Roveri N: A low-angle x-ray diffraction analysis of osteonic inorganic phase using synchrotron radiation. Calcif Tissue Int 37: 659–664, 1985.PubMedGoogle Scholar
  111. 111.
    Ascenzi A, Bonucci E: The tensile properties of single osteons. Anat Rec 158: 375–386, 1967.PubMedGoogle Scholar
  112. 112.
    Ascenzi A, Bonucci E: The compressive properties of single osteons. Anat Rec 161: 377–392, 1968.PubMedGoogle Scholar
  113. 113.
    Ascenzi A, Bonucci E: Relationship between ultrastructure and “pin test” in osteons. Clin Orthop Rel Res 121: 275–294, 1976.Google Scholar
  114. 114.
    Ascenzi A, Bonucci E, Simkin A: An approach to the mechanical properties of single osteonic lamellae. J Bio-mechanics 6: 277–235, 1973.Google Scholar
  115. 115.
    Ascenzi A, Benvenuti A, Bonucci E: The tensile properties of single osteonic lamellae: Technical problems and preliminary results. J Biomechanics 15: 29–37, 1982.Google Scholar
  116. 116.
    Portigliatti Barbos M, Bianco P, Ascenzi A: Distribution of osteonal and interstitial components in the human femoral shaft with reference to structure, calcification and mechanical properties. Acta Anat 115: 178–186, 1983.Google Scholar
  117. 117.
    Portigliatti Barbos M, Bianco P, Ascenzi A, Boyde A: Collagen orientation in compact bone: II. Distribution of lamellae in the whole of the femoral shaft with reference to its mechanical properties. Metab Bone Dis Rel Res 5: 309–311, 1984.Google Scholar
  118. 118.
    Reid SA: A study of lamellar organization in juvenile and adult human bone. Anat Embryol 174: 329–338, 1986.PubMedGoogle Scholar
  119. 118.
    Reid SA: A study of lamellar organization in juvenile and adult human bone. Anat Embryol 174: 329–338, 1986.PubMedGoogle Scholar
  120. 120.
    Bernard GW, Pease DC: An electron microscopic study of initial intramembranous osteogenesis. Am J Anat 125: 271–290, 1969.PubMedGoogle Scholar
  121. 121.
    Vittur F, Pugliarello MC, de Bernard B: Chemical modifications of cartilage matrix during endochondral calcification. Experientia 27: 126–127, 1971.PubMedGoogle Scholar
  122. 122.
    Vittur F, Pugliarello MC, de Bernard B: The calcium binding properties of a glycoprotein isolated from preosseous cartilage. Biochem Biophys Res Commun 48: 143–152, 1972.PubMedGoogle Scholar
  123. 123.
    Bonucci E: Calcifiable matrices. In: Connective Tissue Research: Chemistry, Biology and Physiology. Dezyl Z, Adam M (eds), New York: Alan R. Liss, p 113–123, 1981.Google Scholar
  124. 124.
    Bonucci E: Intra- vs. extra-vesicle calcification in epiphyseal cartilage. In: Matrix Vesicles. A Ascenzi, E Bonucci, B de Bernard (eds), Milano: Wichtig, p 167–172, 1981.Google Scholar
  125. 125.
    Bonucci E: The structural basis of calcification. In: Ultrastructure of Connective Tissue Matrix. S Ruggeri, PM Motta (eds), Boston: Martinus Nijhoff, p 165–191, 1984.Google Scholar
  126. 126.
    Engstròm A, Engfeldt B: Lamellar structure of osteons demonstrated by microradiography. Experientia 9: 19, 1953.PubMedGoogle Scholar
  127. 127.
    Marotti G, Muglia MA, Zaffe D: A SEM study of osteocyte orientation in alternately structured osteons. Bone 6: 331–334, 1985.PubMedGoogle Scholar
  128. 128.
    Muglia MA, Marotti G, Palumbo C, Ascenzi A: II comportamento meccanico di linee cementanti sollecitate a forze volventi. Atti Soc hai Anat 15, Convegno Como, p 311, 1984.Google Scholar
  129. 129.
    Muglia MA, Marotti G, Ascenzi A: Comportamento meccanico di campioni cilindrici di osso lamellare e di osso a fibre intrecciate sollecitati a forze volventi. Atti Soc Ital Anat 16 Convegno, Torino, p 20, 1986.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  1. 1.Istituto di Anatomia Umana NormaleModenaItaly

Personalised recommendations