The electron microscopic structure of the osteoblast

Part of the Electron Microscopy in Biology and Medicine book series (EMBM, volume 7)


In sections routinely stained for light microscopy, osteoblasts are most easily recognized by their strongly basophilic cytoplasm, the large Golgi apparatus in negative image, and the eccentrically located nucleus. The long axis of the cell can be both parallel and perpendicular to the surface of the bone matrix. These features are most conspicuous also in the electron microscope. In this chapter we will describe the fine structure of the nucleus and organelles, including their functions in processes such as secretion, endocytosis, etc. Where possible, it will also be described how the ultrastructure of the osteoblast is influenced by various physiological or experimental circumstances. For a review of the light microscopic structure of the osteoblast, the reader is referred to the comprehensive article of Pritchard [1].


Golgi Apparatus Secretory Granule Osteogenesis Imperfecta Fracture Callus Matrix Granule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pritchard, JJ: The osteoblast. In: The Biochemistry and physiology of bone. GH Bourne (ed). New York: Academic Press, p 179 - 212, 1956.Google Scholar
  2. 2.
    Scott BL and Pease DC: Electron microscopy of the epiphyseal apparatus. Anat Rec 126: 465 - 479, 1956.PubMedCrossRefGoogle Scholar
  3. 3.
    Cameron DA: The fine structure of bone and calcified cartilage. Clin Orthop Rel Res 26: 199 - 228, 1963.Google Scholar
  4. 4.
    Cameron DA: The ultrastructure of bone. In: The Bio¬chemistry and Physiology of Bone, 2nd ed, Vol 1. GH Bourne (ed), New York: Academic Press, p 191 - 236, 1972.Google Scholar
  5. 5.
    Boivin G, Morel G, Mesguich P, Pike JW, Chapuy, MC, Bouillon R, Haussler MR, Dubois PM, Meunier PJ: Ultrastructural-immunocytochemical localization of endo¬genous steroid and peptide hormones and of steroid re¬ceptors in osteoblasts of neonatal mice calvaria (abstract). Calcif Tissue Int 36: 452, 1984.Google Scholar
  6. 6.
    Boivin G, Morel G, Baulieu E-E, Dubois PM, Meunier PJ: Ultrastructural-immunocytochemical localization of endogenous steroid hormones in osteoblasts of neonatal mice and rat calvaria (abstract). J Bone Min Res 1: 76, 1986.Google Scholar
  7. 7.
    Gothlin G: Electron microcopic observations on fracture repair in the rat. Acta Path microbiol Scand A 81: 507- 522, 1973.Google Scholar
  8. 8.
    Shapiro F, Holtrop ME, Glimcher MJ: Organization and cellular biology of the perichondria! ossification groove of Ranvier. J Bone Joint Surg 59A: 703 - 723, 1977.PubMedGoogle Scholar
  9. 9.
    Luk SC, Nopajaroonsri C, Simon GT: The ultrastructure of endosteum: A topographic study in young adult rab¬bits. J Ultrastruct Res 46: 165 - 183, 1974.PubMedCrossRefGoogle Scholar
  10. 10.
    Cameron DA, Paschall HA, Robinson RA: Changes in the fine structure of bone cells after the administration of parathyroid extract. J Cell Biol 33: 1 - 14, 1967.PubMedCrossRefGoogle Scholar
  11. 11.
    Krempien B, Geiger G, Ritz E: Effects of acute and chronic PTH stimulation on osteoblasts and the under¬lying bone matrix. In: Proc Xlth Eur Symp Calc Tiss, Elsinore, 1975. Calcif Tissue Res 21 (Suppl): 260 - 266, 1976.Google Scholar
  12. 12.
    Weisbrode SE, Capen CC, Nagode LA: Fine structural and enzymatic evaluation of bone in thyroparathyroid- ectomized rats receiving various levels of vitamin D. Lab Invest 28: 29 - 37, 1973.PubMedGoogle Scholar
  13. 13.
    Rohr H: Die Kollagensynthese in ihrer Beziehung zur submikroskopischen Struktur des Osteoblasten (elektron- enmikroskopisch-authoradiographische Untersuchung mit tritium-markiertem Prolin). Virchows Arch [A] 338: 342- 354, 1965.Google Scholar
  14. 14.
    Frank RM, Frank P, Lang M: Autoradiographie en microscopie électronique de la synthèse protéique des matrices calcifiées. C R Soc Biol (Paris) 162: 1397 - 1400, 1968.Google Scholar
  15. 15.
    Frank RM, Frank P: Autoradiographie quantitative de Tostéogenèse en microcopie électronique à l’aide de la proline tritiée. Zeitschr Zellf 99: 121 - 133, 1969.CrossRefGoogle Scholar
  16. 16.
    Weinstock M, Leblond CP: Formation of collagen. Fed Proc 33: 1205 - 1218, 1974.PubMedGoogle Scholar
  17. 17.
    Wright GM, Leblond CP: Immunohistochemical locali¬zation of procollagen, III. Type I procollagen antigenicity in osteoblasts and prebone (osteoid). J Histochem Cyto- chem 29: 791 - 804, 1981.CrossRefGoogle Scholar
  18. 18.
    Leblond CP, Wright GM. Steps in the elaboration of collagen by odontoblasts and osteoblasts. In: Methods in Cell Biology. New York: Academic Press, p 167 - 189, 1981.Google Scholar
  19. 19.
    Mark MP, Prince CW, Gay S, Austin RL, Bhown M, Finkelman RD, Butler WT: A comparative immunocyto- chemical study on the subcellular distributions of 44 kDa bone phosphoprotein and bone y-carboxyglutamic acid (Gla)-containing protein in osteoblasts. J Bone Min Res 2: 337 - 346, 1987.CrossRefGoogle Scholar
  20. 20.
    Camarda AJ, Butler WT, Finkelman RD, Nanci A: Immunocytochemical localization of y-carboxyglutamic acid-containing proteins (osteocalcin) in rat bone and dentin. Calcif Tissue Int 40: 349 - 355, 1987.PubMedCrossRefGoogle Scholar
  21. 21.
    Fawcett DW: A Textbook of Histology, 11th ed. Phil¬adelphia: WB Saunders Company, p 11, 1986.Google Scholar
  22. 22.
    Cameron DA: The Golgi apparatus in bone and cartilage cells. Clin Orthop Rel Res 58: 191 - 211, 1968.Google Scholar
  23. 23.
    Weinstock M: Collagen formation. Observations on its intracellular packaging and transport. Z Zellforsch 129: 455 - 470, 1972.PubMedCrossRefGoogle Scholar
  24. 24.
    Bernard GW, Pease DC: An electron microscopic study of initial intramembranous osteogenesis. Am J Anat 125: 271 - 290, 1969.PubMedCrossRefGoogle Scholar
  25. 25.
    Ohya K: Effects of colchicine on osteoblast in rat: An ultrastructural study. Bull Tokyo Med Dent Univ 25: 277 - 295, 1978.PubMedGoogle Scholar
  26. 26.
    Scherft JP, Heersche JNM: Accumulation of collagen- containing vacuoles in osteoblasts after administration of colchicine. Cell Tissue Res 157: 353 - 365, 1975.PubMedCrossRefGoogle Scholar
  27. 27.
    Takagi M Parmley RT, Toda Y, Denys FR: Ultrastruc¬tural cytochemistry of complex carbohydrates in osteo¬blasts, osteoid and bone matrix. Calcif Tissue Int 35: 309 - 319, 1983.PubMedCrossRefGoogle Scholar
  28. 28.
    Gôthlin G, Ericsson JLE: Electron microscopic studies of cytoplasmic filaments and fibers in different cell types of fracture callus in the rat. Virchows Arch [B] 6: 24 - 37, 1970.Google Scholar
  29. 29.
    Weinstock M: Radioautographic visualization of 3H-fucose incorporation into glycoprotein by osteoblasts and its deposition into bone matrix. Calcif Tissue Int 27: 177— 185, 1979.Google Scholar
  30. 30.
    Landis WJ, Paine MC, Glimcher MJ: Electron micros¬copic observations of bone tissue prepared anhydrously in organic solvents. J Ultrastruct Res 59: 1 - 30, 1977.PubMedCrossRefGoogle Scholar
  31. 31.
    Thyberg J, Nilsson S, Friberg U: Electron microscopic and enzyme cytochemical studies on the guinea pig metaphysis with special reference to the lysosomal system of different cell types. Cell Tissue Res 156: 273 - 299, 1975.PubMedGoogle Scholar
  32. 32.
    Thyberg J, Friberg U: The lysosomal system in endo¬chondral growth. In: Progress in Histochemistry and Cytochemistry, Vol 10, No 4. Stuttgart: Fischer Verlag, 1978.Google Scholar
  33. 33.
    Doty SB, Schofield BH, Robinson RA: The electron microcopic identification of acid phosphatase and adeno- sinetriphosphatase in bone cells following parathyroid extract or thyrocalcitonin administration. In: Parathyroid Hormone and Thyrocalcitonin. Talmage, Bélanger (eds), Amsterdam: Excerpta Medica Foundation, p 169 - 181, 1968.Google Scholar
  34. 34.
    Gôthlin G, Ericsson JLE: Fine structural localization of acid phosphomonoesterase in the osteoblasts and osteo- cytes of fracture callus. Histochemie 35: 81 - 91, 1973.CrossRefGoogle Scholar
  35. 35.
    Bernard GW: Ultrastructural localization of alkaline phosphatase in initial intramembranous osteogenesis. Clin Orthop Rel Res 135: 218 - 225, 1978.Google Scholar
  36. 36.
    Gôthlin G, Ericsson JLE: Fine structural localization of alkaline phosphatase in the fracture callus of the rat. Histochemie 36: 225 - 236, 1973.PubMedCrossRefGoogle Scholar
  37. 37.
    Doty SB, Schofield BH: Enzyme histochemistry of bone and cartilage cells. In: Progress in Histochemistry and Cytochemistry, Vol 8, No 1, Stuttgart: Fischer Verlag, 1976.Google Scholar
  38. 38.
    Yamaguchi A, Yamanouchi M, Yoshiki S: Osteoblastic and osteoclastic differentiation of mononuclear cells facing the resorbing surface of uncalcified cartilage in the tibia of embryonic chick. Cell Tissue Res 240: 425 - 431, 1985.CrossRefGoogle Scholar
  39. 39.
    Doty SB and Mathews RS: Electron microscopic and histochemical investigation of osteogenesis imperfecta tarda. Clin Orthop Rel Res 80: 191 - 201, 1971.CrossRefGoogle Scholar
  40. 40.
    Gôthlin G, Ericsson JLE: Fine structural localization of alkaline phosphomonoesterase in the fracture callus of the rat. Isr J Med Sci 7: 488 - 490, 1971.PubMedGoogle Scholar
  41. 41.
    Scherft JP, Danes JK: Alkaline phosphatase in the organic bone matrix. Ultramicroscopy 3: 140 - 141, 1978.Google Scholar
  42. 42.
    Gôthlin G, Ericsson JLE: Studies on the ultrastructural localization of adenosine triphosphatase activity in frac¬ture callus. Histochemie 35: 111 - 126, 1973.PubMedCrossRefGoogle Scholar
  43. 43.
    Jande SS, Grosso WT: Acid phosphatase in Golgi-vesicles of osteoblasts. Experientia 31: 223 - 225, 1975.PubMedCrossRefGoogle Scholar
  44. 44.
    Walzer C: An attempt at localizing adenylate cyclase in rat calvaria. Influence of sodium fluoride and parathyroid hormone. Histochemie 68: 281 - 296, 1980.CrossRefGoogle Scholar
  45. 45.
    Gothlin G, Ericsson JLE: Electron microscopic studies on the uptake and storage of thorium dioxide molecules in different cell types of fracture callus. Acta Path Micro¬biol Scand A 81: 523 - 542, 1973.Google Scholar
  46. 46.
    Thyberg J: Electron microscopic studies on the uptake of exogenous marker particles by different cell types in the guinea pig metaphysis. Cell Tissue Res 156: 301 - 315, 1975.PubMedGoogle Scholar
  47. 47.
    Sasaki T, Yamaguchi A, Higashi S, Yoshiki S: Uptake of horseradish peroxidase by bone cells during endochondral bone development. Cell Tissue Res 239: 547 - 553, 1985.PubMedGoogle Scholar
  48. 48.
    Matthews JL, Martin JH, Kennedy JW, Collins EJ: An ultrastructural study of calcium and phosphate deposition and exchange in tissues. In: Hard Tissue Growth, Repair and Mineralization. Ciba Foundation Symp 11, Amster¬dam: Excerpta Medica, p 187 - 201, 1973.Google Scholar
  49. 49.
    Gay C, Schraer H: Frozen thin-sections of rapidly form¬ing bone: Bone cell ultrastructure. Calcif Tissue Res 19: 39 - 49, 1975.PubMedCrossRefGoogle Scholar
  50. 50.
    Martin JH, Matthews JL: Mitochondrial granules in chondrocytes, osteoblasts and osteocytes. Clin Orthop Rel Res 68: 273 - 278. 1970.Google Scholar
  51. 51.
    Landis WJ, Paine MC, Glimcher MJ: Use of acrolein vapors for the anhydrous preparation of bone tissue for electron microcopy. J Ultrastructure Res 70: 171 - 180, 1980.CrossRefGoogle Scholar
  52. 52.
    Manston J, Katchburian E: Demonstration of mitochon¬drial mineral deposits in osteoblasts after anhydrous fixation and processing. J Microscopy 134: 177 - 182, 1984.CrossRefGoogle Scholar
  53. 53.
    Landis WJ, Hauschka BT, Rogerson CA, Glimcher MJ: Electron microscopic observations of bone tissue pre¬pared by ultracryomicrotomy. J Ultrastruct. Res 59: 185- 206, 1977.Google Scholar
  54. 54.
    Landis WJ, Glimcher MJ: Electron diffraction and elec¬tron probe microanalysis of the mineral phase of bone tissue prepared by anhydrous techniques. J Ultrastruct Res 63: 188 - 223, 1978.PubMedCrossRefGoogle Scholar
  55. 55.
    Dempster DW, Elder HY, Nicholson WAP, Smith DA: Microprobe analysis of intracellular mineral deposits in rachitic rat bone J Physiol 291: 61, 1979.Google Scholar
  56. 56.
    Burger EH and Matthews JL: Cellular calcium distribu¬tion in fetal bones studied with K-pyroantimonate. Calcif Tissue Res 26: 181 - 190, 1978.PubMedCrossRefGoogle Scholar
  57. 57.
    Matthews JL, Martin JH, Collins EJ, Kennedy JW, Powell EL: Immediate changes in the ultrastructure of bone cells following thyrocalcitonin administration. In: Calcium, Parathyroid Hormone and the Calcitonins. Talmage, Munson (eds), Int Congress Series 243, Amster¬dam: Excerpta Medica, p 375 - 382, 1972.Google Scholar
  58. 58.
    Kjaer I, Matthiessen ME: Cytochemical and ultrastruc¬tural characteristics of human osteoblasts in relation to general skeletal growth activity. In: Proc. Xlth Eur Symp Calc Tiss, Elsinore, 1975. Calcif Tissue Res 21 (Suppl): 102 - 107, 1976.Google Scholar
  59. 59.
    Kjaer I, Matthiessen ME: Mitochondrial granules in human osteoblasts with a reference to one case of osteo¬genesis imperfecta. Calcif Tissue Res 17: 173 - 176, 1975.PubMedCrossRefGoogle Scholar
  60. 60.
    Burger EH, De Bruijn WC: Mitochondrial calcium of intact and mechanically damaged bone and cartilage cells studied with K-pyroantimonate. Histochemistry 62: 325- 336, 1979.Google Scholar
  61. 61.
    Arnott HJ, Pautard FGE: Osteoblast function and fine stucture. Isr J Med Sci 3: 657 - 670, 1967.Google Scholar
  62. 62.
    Weinger JM, Holtrop ME: An ultrastructural study of bone cells: The occurrence of microtubules, microfila¬ments and tight junctions. Calcif Tissue Res 14: 15 - 29, 1974.PubMedCrossRefGoogle Scholar
  63. 63.
    Thyberg J, Moskalewski S, Friberg U: Effects of antimi- crotubular agents on the fine structure of the Golgi com¬plex in embryonic chick osteoblasts. Cell Tissue Res 193: 247 - 257, 1978.PubMedCrossRefGoogle Scholar
  64. 64.
    Tonna EA, Lampen NM: Electron microscopy of aging skeletal cells. I. Centrioles and solitary cilia. J Gerontol 27: 316 - 324, 1972.PubMedGoogle Scholar
  65. 65.
    Scherft JP, Daems WT: Single Cilia in chondrocytes. J Ultrastruct Res 19: 546 - 555, 1967.PubMedCrossRefGoogle Scholar
  66. 66.
    King GJ, Holtrop ME: Actin-like filaments in bone cells of cultured mouse calvaria as demonstrated by binding to heavy meromyosin. J Cell Biol 66: 445 - 451, 1975.PubMedCrossRefGoogle Scholar
  67. 67.
    Stanka P: Occurrence of cell junctions and microfilaments in osteoblasts. Cell Tissue Res 159: 413 - 422, 1975.PubMedCrossRefGoogle Scholar
  68. 68.
    Scott BL, Glimcher MJ: Distribution of glycogen in osteoblasts of the fetal rat. J Ultrastruct Res 36: 565- 586, 1971.Google Scholar
  69. 69.
    Bonucci E: Lipid globules in osteogenic cells, a histochemical and electronmicroscopic investigation. J Microscopie 4: 57 - 70, 1965.Google Scholar
  70. 70.
    Ornoy A, Atkin I, Levy J: Ultrastructural studies on the origin and structure of matrix vesicles in bone of young rats. Acta Anat 106: 450 - 461, 1980.PubMedCrossRefGoogle Scholar
  71. 71.
    Messer HH: Bone cell membranes. Clin Orthop Rel Res 166: 256 - 276, 1982.Google Scholar
  72. 72.
    Jeansonne BG, Feagin FF, McMinn RW, Shoemaker RL, Rehm WS: Cell-to-cell communication of osteoblasts. J Dent Res 58: 1415 - 1423, 1979PubMedCrossRefGoogle Scholar
  73. 73.
    Holtrop ME: The ultrastructure of bone. Ann Clin Lab Sci 5: 264 - 271, 1975.PubMedGoogle Scholar
  74. 74.
    Doty SB: Morphological evidence of gap junctions be¬tween bone cells. Calcif Tissue Int 33: 509 - 512, 1981.PubMedCrossRefGoogle Scholar
  75. 75.
    Shen V, Rifas L, Kohler G, Peck WA: Prostaglandins change cell shape and increase intercellular gap junctions in osteoblasts cultured from rat fetal calvaria. J Bone Min Res 1: 243 - 249, 1986.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  1. 1.Laboratory of Cell Biology and Histology Faculty of MedicineUniversity of LeidenLeidenThe Netherlands

Personalised recommendations