Advertisement

Superconductivity

Chapter
Part of the Physics of Solids and Liquids book series (PSLI)

Abstract

The theory of superconductivity was formulated by Bardeen, Cooper, and Schrieffer (1957) and is called the BCS theory. It very successfully describes the superconducting properties of weak superconductors, such as aluminum, which are weak because of the small strength of the electron-phonon interaction. Further refinements of the theory have led to the strong coupling theory of Eliashberg (1960) which describes well the properties of strong superconductors such as lead. The distinction between weak and strong is roughly given by the value of the electron-phonon mass enhancement factor λ, as shown by McMillan (1968). We shall first discuss the BCS theory. It must rank as one of the great successes of many-body formalism, since the theory provides detailed agreement with experiments. This agreement is a refreshing change from most comparisons between many-body theory and experiment, where we often get lost in vertex corrections, correlations, or computer calculations. The beauty of BCS is that it is, mathematically, a simple theory which is exceedingly accurate. The reason for this is that the basic coupling forces are weak, and mean field theory works well.

Keywords

Fermi Surface Tunnel Junction Normal Metal Tunneling Current Electron Tunneling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrikosov, A. A., L. P. Gorkov, and I. E. Dzaloshinski, Methods of Quantum Field Theory in Statistical Physics ( Prentice-Hall, Englewood Cliffs. N.J., 1963 ).zbMATHGoogle Scholar
  2. Ambegaokar, V., and A. Baratoff, Phys. Rev. Lett. 10, 486 (1963); erratum 11, 104 (1963).Google Scholar
  3. Anderson, P. W., Phys. Rev. 112, 1900 (1958).MathSciNetADSCrossRefGoogle Scholar
  4. Balian, R., and N. R. Werthamer, Phys. Rev. 131, 1553 (1963).ADSCrossRefGoogle Scholar
  5. Bardasis, A., and J. R. Schrieffer, Phys. Rev. 121, 1050 (1961).ADSCrossRefGoogle Scholar
  6. Bardeen, J., L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. Bobetic, V. M., Phys. Rev. 136, A1535 (1964).ADSCrossRefGoogle Scholar
  8. Caroli, C., R. Combescot, D. Leder-rozenblatt, P. Nozieres, and D. Saint James, Phys. Rev. B 12, 3977 (1975).Google Scholar
  9. Cohen, M. H., L. M. Falicov, and J. C. Phillips, Phys. Rev. Lett. 8, 316 (1962).ADSzbMATHCrossRefGoogle Scholar
  10. Cooper, L. N., Phys. Rev. 104, 1189 (1956).ADSzbMATHCrossRefGoogle Scholar
  11. Eliashberg, G. M., Sov. Phys. JETP 11, 696 (1960).Google Scholar
  12. Feuchtwang, T. E., Phys. Rev. B 12, 3979 (1975).ADSCrossRefGoogle Scholar
  13. Fiske, M. D., (1978), unpublished.Google Scholar
  14. Fossheim, K., and J. R. Leibowitz, Phys. Rev. 178, 647 (1969).ADSCrossRefGoogle Scholar
  15. Fröhlich, H., Phys. Rev. 79, 845 (1950).ADSzbMATHCrossRefGoogle Scholar
  16. Giaever, I., Phys. Rev. Lett. 5, 147, 464 (1960).ADSCrossRefGoogle Scholar
  17. Giaever, I., H. R. Hart, and K. Megerle, Phys. Rev. 126, 941 (1962).ADSCrossRefGoogle Scholar
  18. Halperin, B. I., and T. M. Rice, Solid State Physics, Vol. 21, eds. H. Ehrenreich, F. Seitz, and D. Turnbull (Academic Press, New York, 1968 ), pp. 115.Google Scholar
  19. Han, S., K. W. Ng, E. L. Wolf, A. Millis, J. L. Smith, and Z. Fisk, Phys Rev. Lett. 57, 238 (1986).ADSCrossRefGoogle Scholar
  20. Josephson, B. D., Phys. Lett. 1, 251 (1962).ADSzbMATHCrossRefGoogle Scholar
  21. Keldysh, L. V., and Y. V. Kopaev, Sov. Phys. Solid State 6, 2219 (1965).Google Scholar
  22. Kirtley, J., D. J. Scalapino, and P. K. Hansma, Phys. Rev. B 14, 3177 (1976).Google Scholar
  23. Kittel, C., Introduction to Solid State Physics, 3rd ed. ( Wiley, New York, 1966 ), p. 458.Google Scholar
  24. Langenburg, D. N., D. J. Scalapino, B. N. Taylor, and R. E. Eck, Phys. Rev. Lett. 15, 294 (1965).ADSCrossRefGoogle Scholar
  25. London, F., Superfluids, Vol. 1 ( Wiley, New York, 1954 ).zbMATHGoogle Scholar
  26. Mahan, G. D., Phys. Rev. 153, 882 (1967); 163, 612 (1967).Google Scholar
  27. Mattis, D. C., and J. Bardeen, Phys. Rev. 111, 412 (1958).ADSzbMATHCrossRefGoogle Scholar
  28. Maxwell, E., Phys. Rev. 78, 477 (1950).ADSCrossRefGoogle Scholar
  29. Mcmillan, W. L., Phys. Rev. 167, 331 (1968).ADSCrossRefGoogle Scholar
  30. Mcmillan, W. L., and J. M. Rowell, Phys. Rev. Lett. 14, 108 (1965).ADSCrossRefGoogle Scholar
  31. Migdal, A. B., Sov. Phys. JETP 7, 996 (1958).MathSciNetGoogle Scholar
  32. Morse, R. W., and H. V. Bohm, Phys. Rev. 108, 1094 (1957).ADSCrossRefGoogle Scholar
  33. Palmer, L. H., and M. Tinkham, Phys. Rev. 165, 588 (1968).ADSCrossRefGoogle Scholar
  34. Parker, W. H., D. N. Langenberg, A. Denenstein, and B. N. Taylor, Phys. Rev. 177, 639 (1969).ADSCrossRefGoogle Scholar
  35. Parks, R. D., ed., Superconductivity, Vols. I & II (Dekker, New York, 1969 ).Google Scholar
  36. Reynolds, C. A., B. Serin, W. H. Wright, and L. B. Nesbitt, Phys. Rev. 78, 487 (1950).ADSCrossRefGoogle Scholar
  37. Rickayzen, G., Phys. Rev. 115, 795 (1959).MathSciNetADSCrossRefGoogle Scholar
  38. Rickayzen, G., Theory of Superconductivity ( Wiley-Interscience, New York, 1965 ).zbMATHGoogle Scholar
  39. Scalapino, D. J., J. R. Schrieffer, and J. W. Wilkins, Phys. Rev. 148, 263 (1966).ADSCrossRefGoogle Scholar
  40. Schafroth, M. R., Phys. Rev. 100, 463 (1955).MathSciNetADSCrossRefGoogle Scholar
  41. Schrieffer, J. R., Theory of Superconductivity (Benjamin, Reading, Mass., 1964 ).Google Scholar
  42. Schrieffer, J. R., D. J. Scalapino, and J. W. Wilkins, Phys. Rev. Lett. 10, 336 (1963).ADSCrossRefGoogle Scholar
  43. Shaw, W., and J. C. Swihart, Phys. Rev. Lett. 20, 1000 (1968).ADSCrossRefGoogle Scholar
  44. Tsuneto, T., Phys. Rev. 118, 1029 (1960).ADSzbMATHCrossRefGoogle Scholar
  45. Zawadowski, A., Phys. Rev. 163, 341 (1967).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  1. 1.University of Tennessee and Oak Ridge National LaboratoryUSA

Personalised recommendations