Advertisement

Electron—Phonon Interaction

Chapter
  • 658 Downloads
Part of the Physics of Solids and Liquids book series (PSLI)

Abstract

The Fröhlich Hamiltonian describes the interaction between a single electron in a solid and LO (longitudinal optical) phonons:
$$H = \sum\limits_p {\frac{{{p^2}}}{{2m}}} {c_p}^ + {c_p} + {\varpi _0}\sum\limits_q {{a_q}^ + {a_q} + } \sum\limits_{qp} {\frac{{{M_0}}}{{{v^{1/2}}}}} \frac{1}{{\left| q \right|}}c_{p + q}^ + {c_p}\left( {{a_q} + {a_q}^ + } \right)$$
$${M_0}^2\frac{{4\pi \alpha \rlap{--} h{{\left( {\rlap{--} h{\varpi _0}} \right)}^{3/2}}}}{{{{\left( {2m} \right)}^{1/2}}}}$$
(6.1.1)
$$\alpha = \frac{{{e^2}}}{{\rlap{--} h}}{\left( {\frac{m}{{2\rlap{--} h{\varpi _0}}}} \right)^{1/2}}\left( {\frac{1}{{{\varepsilon _\infty }}} - \frac{1}{{{\varepsilon _0}}}} \right)$$

Keywords

Fermi Surface Dielectric Function Phonon Interaction Longitudinal Optical Phonon Energy Denominator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, D., in Solid State Physics, vol. 21, eds. H. Ehrenreich, F. Seitz, and D. Turnbull ( Academic Press, New York, 1967 ), p. 1.Google Scholar
  2. Allcock, G. R., Adv. Phys. 5, 412 (1956).ADSGoogle Scholar
  3. Allcock, G. R., in Polarons and Excitons, eds. C. G. Kuper and G. D. Whitfield ( Oliver & Boyd, Edinburgh, 1962 ), pp. 45–70.Google Scholar
  4. Appel, J., Phys. Rev. Lett. 17, 1045 (1966).ADSCrossRefGoogle Scholar
  5. Appel, J., in Solid State Physics, Vol. 21, eds. H. Ehrenreich, F. Seitz, D. Turnbull (Academic Press, 1967 ), p. 193.Google Scholar
  6. Ashcroft, N. W., and J. W. Wilkins, Phys. Lett. 14, 285 (1965).ADSGoogle Scholar
  7. Bogomolov, V. N., E. K. Kudinov, and Yu. A. Firsov, Sov. Phys. Solid State 9, 2502 (1968).Google Scholar
  8. Bohm, D., and I. Staver, Phys. Rev. 84, 836 (1951).ADSCrossRefGoogle Scholar
  9. Böttger, H., and V. V. Bryksin, Phys. Status Solidi B 78, 415 (1976).ADSCrossRefGoogle Scholar
  10. Brillouin, L., J. Phys. Paris 3, 379 (1932); 4, 1 (1933).Google Scholar
  11. Brout, R., and P. Carruthers, Lectures on the Many-Electron Problem ( Wiley-Inter- science, New York, 1963 ).Google Scholar
  12. Conley, J. W., and G. D. Mahan, Phys. Rev. 161, 681 (1967).ADSCrossRefGoogle Scholar
  13. Dewit, H. J., Philips Res. Rep. 23, 449 (1968).Google Scholar
  14. Dunn, D., Can. J. Phys. 53, 321 (1975).ADSCrossRefGoogle Scholar
  15. Engelsberg, S., and J. R. Schrieffer, Phys. Rev. 131, 993 (1963).ADSCrossRefGoogle Scholar
  16. Evrard, R., in Polarons in Ionic Crystals and Polar Semiconductors, ed. J. Devreese ( North-Holland, Amsterdam, 1972 ), pp. 29–80.Google Scholar
  17. Feynman, R. P., Phys. Rev. 97, 660 (1955).ADSzbMATHCrossRefGoogle Scholar
  18. Flynn, C. P., Point Defects and Diffusion (Oxford University Press. Inc., New York, 1972 ).Google Scholar
  19. Garrett, D. G., and J. C. Swihart, J. Phys. F 6, 1781 (1976).ADSCrossRefGoogle Scholar
  20. Grimvall, G., The Electron Phonon Interaction in Metals ( North-Holland, New York, 1981 ).Google Scholar
  21. Harrison, W. A., Pseudopotentials in the Theory of Metals (Benjamin, Reading, Mass., 1966 ).Google Scholar
  22. Hodby, J. W., in Polarons in Ionic Crystals and Polar Semiconductors, ed. J. Devreese ( North-Holland, Amsterdam, 1972 ), pp. 389–459.Google Scholar
  23. Holstein, T., Annals of Phys. 8, 343 (1959).ADSCrossRefGoogle Scholar
  24. Joshi, S. K., and A. K. Rajagopal, in Solid State Physics, Vol. 22, eds. H. Ehrenreich, F. Seitz, and D. Turnbull ( Academic Press. New York, 1968 ), pp. 160–313.Google Scholar
  25. Kartheuser, E., R. Evrard, and J. Devreese, Phys. Rev. Lett. 22, 94 (1969).ADSCrossRefGoogle Scholar
  26. Kay, P., and J. A. Reissland, J. Phys. F 6, 1503 (1976).ADSCrossRefGoogle Scholar
  27. Kohn, W., Phys. Rev. Lett. 2, 395 (1959).ADSCrossRefGoogle Scholar
  28. Kudinov, R. K., D. N. Mirlin, and Yu. A. Firsov, Sov. Phys. Solid State 11, 2257 (1970).Google Scholar
  29. Landau, L. D., and S. I. Pekar, Zh. Eksp. Teor. Fiz. 16, 341 (1946).Google Scholar
  30. Lang, I. G., and Yu. A. Firsov, Sov. Phys. JETP 16, 1301 (1963); Sov. Phys. Solid State 5, 2049 (1964).Google Scholar
  31. Low, F., T. D. Lee, and D. Pines, Phys. Rev. 90, 297 (1953).MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. Lyddane, R. H., R. G. Sachs, and E. Teller, Phys. Rev. 59, 673 (1941).ADSzbMATHCrossRefGoogle Scholar
  33. Mahan, G. D., Phys. Rev. 145, 602 (1966).MathSciNetADSCrossRefGoogle Scholar
  34. Mahan, G. D., in Polarons in Ionic Crystals and Polar Semiconductors, ed. J. Devreese ( North-Holland, Amsterdam, 1972 ), pp. 553–657.Google Scholar
  35. McMillan, W. L, Phys. Rev. 167, 331 (1968).ADSCrossRefGoogle Scholar
  36. Migdal, A. B., Sov. Phys. JETP 7, 996 (1958).MathSciNetGoogle Scholar
  37. Miyake, S. J., J. Phys. Soc. Jpn. 41, 745 (1976).ADSCrossRefGoogle Scholar
  38. Mooradian, A., and G. B. Wright, Phys. Rev. Lett. 16, 999 (1966).ADSCrossRefGoogle Scholar
  39. Nagaev, E. L., Sov. Phys. Solid State 4, 1611 (1963).Google Scholar
  40. Nakajima, S., and M. Watabe, Prog. Theor. Phys. 29, 341 (1963).ADSzbMATHCrossRefGoogle Scholar
  41. Reik, H. G., in Polarons in Ionic Crystals and Polar Semiconductors, ed. J. Devreese ( North-Holland, Amsterdam, 1972 ), pp. 679–714.Google Scholar
  42. Rowell, J. M., W. L. McMillan, and W. L. Feldmann, Phys. Rev. 178, 897 (1969a); Phys. Rev. 180, 658 (1969b); Phys. Rev. B 3, 4065 (1971).ADSCrossRefGoogle Scholar
  43. Schiff, L. I., Quantum Mechanics, 2nd ed. ( McGraw-Hill, New York, 1955 ), p. 199.zbMATHGoogle Scholar
  44. Schotte, K. D., Z. Phys. 196, 393 (1966).ADSCrossRefGoogle Scholar
  45. Schrieffer, J. R., Theory of Superconductivity (Benjamin, Reading, Mass., 1964 ).zbMATHGoogle Scholar
  46. Sham, L. J., and J. M. Ziman, Solid State Phys., Vol. 15, eds. H. Ehrenreich, F. Seitz, and D. Turnbull (Academic Press, New York, 1963 ), p. 221.Google Scholar
  47. Sheng, P., and J. D. Dow, Phys. Rev. B 4, 1343 (1971).ADSCrossRefGoogle Scholar
  48. Shukla, R. C., and R. Taylor, Phys. F 6, 531 (1976).ADSCrossRefGoogle Scholar
  49. Srivastava, P. L., and R. N. Singh, J. Phys. F 6, 1819 (1976).ADSCrossRefGoogle Scholar
  50. Suna, A., Phys. Rev. A 135, 111 (1964).ADSCrossRefGoogle Scholar
  51. Swihart, J. C., D. J. Scalapino, and Y. Wada, Phys. Rev. Lett. 14, 106 (1965).ADSCrossRefGoogle Scholar
  52. Tiabukov, S. V., Zh. Eksp. Teor. Fiz. 23, 381 (1952).Google Scholar
  53. Tomlinson, P. G., and J. P. Carbotte, Solid State Commun. 18, 119 (1976).ADSCrossRefGoogle Scholar
  54. Tsui, D. C., Phys. Rev. B 10, 5088 (1974).ADSCrossRefGoogle Scholar
  55. Wigner, E. P., Math. U. Naturw. Am. Ungar. Akad. Wiss. 53, 477 (1935).zbMATHGoogle Scholar
  56. Woll, E. J., and W. Kohn, Phys. Rev. 126, 1693 (1962).ADSCrossRefGoogle Scholar
  57. Yamashita, J., and T. Kurosawa, J. Phys. Chem. Solids 5, 34 (1958).ADSCrossRefGoogle Scholar
  58. Ziman, J. M., Electrons and Phonons (Oxford University Press, Inc., New York, 1960 ).zbMATHGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  1. 1.University of Tennessee and Oak Ridge National LaboratoryUSA

Personalised recommendations