Exactly Solvable Models

  • Gerald D. Mahan
Chapter
Part of the Physics of Solids and Liquids book series (PSLI)

Abstract

Every many-body theorist should be knowledgeable about the available exactly solvable models. First, there are not many of them. Second, they are useful for gaining insight into many-particle systems. If the problem to be solved can be related to an exactly solvable one, however vaguely, one can usually gain some insight.

Keywords

Helium Posite Sine Dinate Librium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agranovich, V. M., Sov. Phys. JETP 10, 307 (1960); Sov. Phys. Solid State 3, 592 (1961).Google Scholar
  2. Almbladh, C. O., and P. Minnhagen, Phys. Rev. B 17, 929 (1978).ADSCrossRefGoogle Scholar
  3. Anderson, P. W., Phys. Rev. 124, 41 (1961).MathSciNetADSCrossRefGoogle Scholar
  4. Anderson, P. W., and W. L. Mcmillan, in Theory of Magnetism in Transition Metals, Course XXXVII, Enrico Fermi International School of Physics, Varenna, ed. W. Marshall ( Academic Press, New York, 1967 ), pp. 50–86.Google Scholar
  5. Born, M., and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, Inc., New York, 1954); see Fig. 18a on p. 91.Google Scholar
  6. Borstal, G., and H. J. Folge, Phys. Status Solidi B 83, 11 (1977).ADSCrossRefGoogle Scholar
  7. Brueckner, K. A., C. A. Levinson, and H. M. Mahmoud, Phys. Rev. 95, 217 (1954).ADSMATHCrossRefGoogle Scholar
  8. Cini, M., and A. D’Andrea, J. Phys. C 21, 193 (1988).ADSCrossRefGoogle Scholar
  9. Cohen, M. H., and F. Keffer, Phys. Rev. 99, 1128 (1955).ADSMATHCrossRefGoogle Scholar
  10. Davydov, A. S., Theory of Molecular Excitons ( Plenum, New York, 1971 ).Google Scholar
  11. DeWitt, B. S., Phys. Rev. 103, 1565 (1956).MathSciNetADSMATHCrossRefGoogle Scholar
  12. Dietz, R. E., D. G. Thomas, and J. J. Hopfield, Phys. Rev. Lett. 8, 391 (1962)ADSCrossRefGoogle Scholar
  13. Duke, C., and G. D. Mahan, Phys. Rev. 139, A1965 (1965).ADSCrossRefGoogle Scholar
  14. Edwards, S. F., Philos. Mag. 3, 33, 1020 (1958).ADSMATHCrossRefGoogle Scholar
  15. Engelsberg, S., and B. B. Varga, Phys. Rev. 136, A1582 (1964).MathSciNetADSCrossRefGoogle Scholar
  16. Fano, U., Phys. Rev. 103, 1202 (1956); 118, 451 (1960).Google Scholar
  17. Fano, U., Phys. Rev. 124, 1866 (1961).ADSMATHCrossRefGoogle Scholar
  18. Feltgen, R., H. Kirst, K. A. Kohler, H. Pauly, and F. Torello, J. Chem. Phys. 76, 2360 (1982).ADSCrossRefGoogle Scholar
  19. Feynman, R. P., Phys. Rev. 84, 108 (1951).MathSciNetADSMATHCrossRefGoogle Scholar
  20. Friedel, J., Philos. Mag. 43, 153 (1952); Adv. Phys. 3, 446 (1953).Google Scholar
  21. Fröhlich, D., E. Mohler, and P. Wiesner, Phys. Rev. Lett. 26, 554 (1971).ADSCrossRefGoogle Scholar
  22. Fukuda, N., and R. G. Newton, Phys. Rev. 103, 1558 (1956).ADSMATHCrossRefGoogle Scholar
  23. Fumi, F. G., Philos. Mag. 46, 1007 (1955).Google Scholar
  24. Goldberg, A., H. M. Shey, and J. L. Schwartz, Phys. Rev. 146, 176 (1966).ADSCrossRefGoogle Scholar
  25. Heeger, A., in Chemistry and Physics of One-Dimensional Metals, ed. H. J. Keller ( Plenum Press, New York, 1977 ), pp. 87–135.Google Scholar
  26. Henry, C. H., and J. J. Hopfield, Phys. Rev. Lett. 15, 964 (1965).ADSCrossRefGoogle Scholar
  27. Hopfield, J. J., Phys. Rev. 112, 1555 (1958).ADSMATHCrossRefGoogle Scholar
  28. Kohn, W., and J. M. Luttinger, Phys. Rev. 108, 590 (1957).MathSciNetADSMATHCrossRefGoogle Scholar
  29. Langer, J. S., and V. Ambegaokar, Phys. Rev. 121, 1090 (1961).ADSMATHCrossRefGoogle Scholar
  30. Levinson, N., Kyl. Danske Videnskab. Selskab, Mat.-fys. Medd. 25 (9) (1949).Google Scholar
  31. Lieb, E. H., and D. C. Mattis, Mathematical Physics in One Dimension (Academic Press, New York, 1966) Chap. 4.Google Scholar
  32. Luther, A., and V. J. Emery, Phys. Rev. Lett. 33, 589 (1974).ADSCrossRefGoogle Scholar
  33. Luther, A., and I. Peschel, Phys. Rev. B 9, 2911 (1974).ADSCrossRefGoogle Scholar
  34. Luttinger, J. M., J. Math. Phys. N.Y. 4, 1154 (1963).MathSciNetADSCrossRefGoogle Scholar
  35. Mahan, G. D., in Electronic Structure of Polymers and Molecular Crystals, eds. J. M. Andre and J. Ladik ( Plenum Press, New York, 1975 ), pp. 79–158.Google Scholar
  36. Mattis, D. C., and E. H. Lieb, J. Math. Phys. N.Y. 6, 304 (1965).MathSciNetADSCrossRefGoogle Scholar
  37. Overhauser, A. W., Physics 1, 307 (1965).Google Scholar
  38. Schönhammer, K., and O. Gunnarsson, Solid State Commun. 23, 691 (1977).ADSCrossRefGoogle Scholar
  39. Schotte, K., and U. Schotte, Phys. Rev. 182, 479 (1969).MathSciNetADSCrossRefGoogle Scholar
  40. Schweber, S. S., Relativistic Quantum Field Theory ( Harper & Row, New York, 1961 ).Google Scholar
  41. Tomonaga, S., Prog. Theor. Phys. (Kyoto) 5, 544 (1950).Google Scholar
  42. Van Haeringen, W., Phys. Rev. 137, A1902 (1965).CrossRefGoogle Scholar
  43. Williams, F. E., and M. H. Hebb, Phys. Rev. 84, 1181 (1951).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Gerald D. Mahan
    • 1
  1. 1.University of Tennessee and Oak Ridge National LaboratoryUSA

Personalised recommendations