Advertisement

Introductory Material

Chapter
Part of the Physics of Solids and Liquids book series (PSLI)

Abstract

First quantization in physics refers to the property of particles that certain operators do not commute:
$$\begin{gathered} \left[ {x,{p_x}} \right] = i\rlap{--} h \hfill \\ E \to \rlap{--} hi\frac{\partial }{{{\partial _t}}} \hfill \\ \end{gathered} $$
(1.1.1)

Keywords

Harmonic Oscillator Commutation Relation Hubbard Model Anderson Model Pair Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, D., in Solid State Physics, Vol. 21, eds. H. Ehrenreich, F. Seitz, and D. Turnbull ( Academic Press, New York, 1967 ), pp. 1–113.Google Scholar
  2. Anderson, P. W., Phys. Rev. 124, 41 (1961).MathSciNetADSCrossRefGoogle Scholar
  3. Beni, G., Phys. Rev. B 10, 2186 (1974).ADSCrossRefGoogle Scholar
  4. Born, M., and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, Inc., London, 1954 ).zbMATHGoogle Scholar
  5. Callen, H., in Physics of Many-Particle Systems, Vol. 1, ed. E. Meeron ( Gordon & Breach, New York, 1966 ), pp. 183–230.Google Scholar
  6. Domb, C., and M. S. Green, Phase Transitions and Critical Phenomena, Vols. 1–6 (Academic Press, New York, 1972–1977;.Google Scholar
  7. Ehrenreich, H., and A. W. Overhauser, Phys. Rev. 104, 331 (1958).ADSCrossRefGoogle Scholar
  8. Evrard, R., in Polarons in Ionic Crystals and Polar Semiconductors, ed. J. T. Devreese ( North-Holland, Amsterdam, 1972 ), pp. 29–80.Google Scholar
  9. Fano, U., Phys. Rev. 124, 1866 (1961).ADSzbMATHCrossRefGoogle Scholar
  10. Fröhlich, H., H. Pelzer, and S. Zienau, Philos. Mag. 41, 221 (1950).zbMATHGoogle Scholar
  11. Fröhlich, H., Adv. Phys. 3, 325 (1954).ADSCrossRefGoogle Scholar
  12. Gerritsen, A. N., and J. O. Linde, Physica 17, 573, 584 (1951); 18, 872 (1954).ADSCrossRefGoogle Scholar
  13. Gutzwiller, M. C., Phys. Rev. Lett. 10, 159 (1963).ADSCrossRefGoogle Scholar
  14. Harrison, W. A., Pseudopotentials in the Theory of Metals (Benjamin, Reading, Mass., 1966 ).Google Scholar
  15. Heine, V., Solid State Physics, Vol. 24, eds. H. Ehrenreich, F. Seitz, and D. Turnbull ( Academic Press, New York, 1970 ).Google Scholar
  16. Hill, T. L., Statistical Mechanics (McGraw-Hill, New York, 1956), Chap. 7.Google Scholar
  17. Hopfield, J. J., Phys. Rev. 112, 1555 (1958).ADSzbMATHCrossRefGoogle Scholar
  18. Hubbard, J., Proc. R. Soc. London Ser. A 276, 238 (1963); 277, 237 (1964); 281, 401 (1964); 285, 542 (1965); 296, 82, 100 (1966).Google Scholar
  19. Jordan, P., and E. Wigner, Z. Phys. 47, 631 (1928).ADSCrossRefGoogle Scholar
  20. Kartheuser, R., in Polarons in Ionic Crystals and Polar Semiconductors, ed. J. T. Devreese ( North-Holland, Amsterdam, 1972 ), pp. 717–733.Google Scholar
  21. Kondo, J., Prog. Theor. Phys. (Kyoto) 32, 37 (1964).Google Scholar
  22. Kondo, J., in Solid State Physics, Vol. 23, eds. H. Ehrenreich, F. Seitz, and D. Turnbull ( Academic Press, New York, 1969 ), pp. 183–281.Google Scholar
  23. Lieb, E. H., and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).ADSCrossRefGoogle Scholar
  24. Mahan, G. D., J. Phys. Chem. Solids 26, 751 (1965).ADSCrossRefGoogle Scholar
  25. Mahan, G. D., in Polarons in Ionic Crystals and Polar Semiconductors, ed. J. T. Devreese ( North-Holland, Amsterdam, 1972 ), pp. 553–657.Google Scholar
  26. Maradudin, A. A., E. W. Montroll, and G. H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation ( Academic Press. New York, 1963 ).Google Scholar
  27. Matsubara, T., and H. Matsuda, Prog. Theor. Phys. (Kyoto) 16, 416 (1956).ADSCrossRefGoogle Scholar
  28. Mozer, B., L. A. DeGraaf, and B. LeNeindre, Phys. Rev. A 9, 448 (1974).ADSCrossRefGoogle Scholar
  29. Onsager, L., Phys. Rev. 65, 117 (1944).MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. Parr, R. G., Quantum Theory of Molecular Electronic Structure (Reading, Mass., Benjamin, Reading, Mass., 1964 ).Google Scholar
  31. Percus, J. K., in The Equilibrium Theory of Classical Fluids, eds. H. L. Frisch and J. L. Lebowitz (Benjamin, Reading, Mass., 1964), pp. II-33-II-170.Google Scholar
  32. Schiff, L. I., Quantum Mechanics ( McGraw-Hill, New York, 1968 ).Google Scholar
  33. Schrieffer, J. R., and P. A. Wolff, Phys. Rev. 149, 491 (1966).ADSCrossRefGoogle Scholar
  34. Shuey, R. T., Phys. Rev. 139, A 1675 (1965).Google Scholar
  35. Thomas, D. G., J. Appl. Phys. Suppl. 32, 2298 (1961).ADSCrossRefGoogle Scholar
  36. Tomlinson, P. G., and J. C. Swihart, Phys. Condens. Matter 19, 117 (1975).ADSCrossRefGoogle Scholar
  37. Zener, C., Phys. Rev. 81, 440 (1951).ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  1. 1.University of Tennessee and Oak Ridge National LaboratoryUSA

Personalised recommendations