Advertisement

Liquid Helium

Chapter
  • 639 Downloads
Part of the Physics of Solids and Liquids book series (PSLI)

Abstract

Helium has two common isotopes, 3He and 4He. Each isotope can be separated and a liquid formed at low temperatures which is nearly pure 3He or pure 4He. Each has unusual properties and displays collective behavior of a unique character. The boson liquid 4He shows a phase transition at Tλ = 2.172 K to a superfluid state which is similar to Bose—Einstein condensation, although vastly modified by the strong interparticle interactions. Similarly, the fermion liquid 3He develops a Fermi distribution at low temperature, and the particles have a superfluid transition which is similar to the superconducting transition in a metal. Of course, now it is occurring in a liquid, of electrically neutral atoms, so there is no Meissner effect, but there is pairing. However, it also has a unique character, since the atom avoid the usual singlet pairing common to metals and instead pair with the spins aligned parallel. The triplet pairing, in turn, leads to many new phenomena and a richer phase diagram, which was discovered by Osheroff et al. (1972).

Keywords

Liquid Helium Ground State Property Ground State Wave Function Average Kinetic Energy Quasi Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrikosov, A. A., and I. M. Khalatnikov, Rep. Prog. Phys. 22, 329 (1959).ADSCrossRefGoogle Scholar
  2. Achter, E. K., and L. Meyer, Phys. Rev. 188, 291 (1969).ADSCrossRefGoogle Scholar
  3. Aldrich, C. H., C. J. Pethick, and D. Pines, Phys, Rev. Lett. 37, 845 (1976).ADSCrossRefGoogle Scholar
  4. Anderson, P. W., and W. F. Brinkman, in The Helium Liquids, eds. J. G. M. Armitage and I. E. Farquhar ( Academic Press, New York, 1975 ), pp. 315–416.Google Scholar
  5. Balian, R., and N. R. Werthamer, Phys. Rev. 131, 1553 (1963).ADSCrossRefGoogle Scholar
  6. Baym, G., and C. Pethick, in The Physics of Liquid and Solid Helium, Part 2, eds. J. B. Ketterson and K. Bennemann (Wiley, New York, 1978), Chap. 1.Google Scholar
  7. Berk, N. F., and J. R. Schrieffer, Phys. Rev. Lett. 17, 433 (1966).ADSCrossRefGoogle Scholar
  8. Bijl, A, Physica 7, 860 (1940).ADSCrossRefGoogle Scholar
  9. Bogoliubov, N. N., J. Phys. Moscow 11, 23 (1947).Google Scholar
  10. Bogoliubov, N. N., and D. N. Zubarev, Sov. Phys. JETP 1, 83 (1955).Google Scholar
  11. Brooker, G. A., and J. Sykes, Phys. Rev. Lett. 21, 279 (1968).ADSCrossRefGoogle Scholar
  12. Brown, G. V., and M. H. Coopersmith, Phys. Rev. 178, 327 (1969).ADSCrossRefGoogle Scholar
  13. Cowley, R. A., and A. D. B. Woods, Can. J. Phys. 49, 177 (1971).ADSCrossRefGoogle Scholar
  14. Dingle, R. B. Philos. Mag. 40, 573 (1949).zbMATHGoogle Scholar
  15. Doniach, S., and S. Engelsberg, Phys. Rev. Lett. 17, 750 (1966).ADSCrossRefGoogle Scholar
  16. Dy, K. S., and C. J. Pethick, Phys. Rev. 185, 373 (1969).ADSCrossRefGoogle Scholar
  17. Feenberg, E., Theory of Quantum Fluids ( Academic Press, New York, 1969 ).Google Scholar
  18. Feynman, R. P., Phys. Rev. 94, 262 (1954).ADSzbMATHCrossRefGoogle Scholar
  19. Feynman, R. P., and M. Cohen, Phys. Rev. 102, 1189 (1956); 107, 13 (1957).Google Scholar
  20. Francis, W. P., G. V. Chester, and L. Reatto, Phys. Rev. A 1, 86 (1970).Google Scholar
  21. Griffin, A., Phys. Rev. B 32, 3289 (1985).Google Scholar
  22. Hallock, R. B., J. Low Temp. Phys. 9, 109 (1972).ADSCrossRefGoogle Scholar
  23. Harling, O., Phys. Rev. A 3, 1073 (1971).ADSCrossRefGoogle Scholar
  24. Hirschfelder, J. O., C. F. Curtiss, and R. B. Bird, Molecular Theory of Gasses and Liquids ( Wiley, New York, 1954 ), p. 110.Google Scholar
  25. Hohenberg, P. C., and P. M. Platzman, Phys. Rev. 152, 198 (1966).ADSCrossRefGoogle Scholar
  26. Hone, D., Phys. Rev. 121, 669 (1961).ADSCrossRefGoogle Scholar
  27. Jastrow, R., Phys. Rev. 98, 1479 (1955).ADSzbMATHCrossRefGoogle Scholar
  28. Jensen, H. H., H. Smith, and J. W. Wilkins, Phys. Lett. A 27, 532 (1968).ADSCrossRefGoogle Scholar
  29. Kohn, W., and D. Sherrington, Rev. Mod. Phys. 42, 1 (1970).ADSzbMATHCrossRefGoogle Scholar
  30. Landau, L. D., J. Phys. Moscow 5, 71 (1941); 11, 91 (1947); translations in I. M. Khalatnikov, Introduction to the Theory of Superfluidity ( Benjamin, Reading, Mass., 1965 ).Google Scholar
  31. Landau, L. D., Phys. Moscow 10, 25 (1946); Sov. Phys. JETP 3, 920 (1956); 5, 101 (1957).Google Scholar
  32. Leggett, A. J., Phys. Rev. 140, A1869 (1965).MathSciNetADSCrossRefGoogle Scholar
  33. Leggett, A. J., Rev. Mod. Phys. 47, 331 (1975).ADSCrossRefGoogle Scholar
  34. Levin, K., and O. T. Valls, Phys. Rev. B 17, 191 (1978).ADSCrossRefGoogle Scholar
  35. Lifshits, E. M., and E. L. Andronikashivile, A Supplement to Helium ( Consultants Bureau, New York, 1959 ), p. 75.Google Scholar
  36. Luttinger, J. M., and P. Nozières, Phys. Rev. 127, 1423, 4131 (1962).Google Scholar
  37. Massey, W. E., Phys. Rev. 151, 153 (1966).ADSCrossRefGoogle Scholar
  38. Massey, W. E., and C. W. Woo, Phys. Rev. 164, 256 (1967).ADSCrossRefGoogle Scholar
  39. Mcmillan, W. L., Phys. Rev. 138, A442 (1965).ADSCrossRefGoogle Scholar
  40. Mermin, N. D., and G. Stare, Phys. Rev. Lett. 30, 1135 (1973).ADSCrossRefGoogle Scholar
  41. Mook, H. A., Phys. Rev. Lett. 55, 2452 (1985).ADSCrossRefGoogle Scholar
  42. Osheroff, D. D., Phys. Rev. Lett. 33, 1009 (1974).ADSCrossRefGoogle Scholar
  43. Osheroff, D. D., R. C. Richardson, and D. M. Lee, Phys. Rev. Lett. 28, 885 (1972).ADSCrossRefGoogle Scholar
  44. Osheroff, D. D., W. J. Gully, R. C. Richardson, and D. M. Lee, Phys. Rev. Lett. 29, 920 (1972).ADSCrossRefGoogle Scholar
  45. Patton, B. R., and A. Zaringhalam, Phys. Lett. A 55, 95 (1975).ADSCrossRefGoogle Scholar
  46. Penrose, O., Philos. Mag. 42, 1373 (1951).zbMATHGoogle Scholar
  47. Penrose, O., and L. Onsager, Phys. Rev. 104, 576 (1956).ADSzbMATHCrossRefGoogle Scholar
  48. Percus, J. K., in The Equilibrium Theory of Classical Fluids, eds. H. L. Frisch and J. L. Lebowitz (Benjamin, Reading, Mass., 1964), pp. 11–33-11–170.Google Scholar
  49. Pines, D., and P. Nozières, The Theory of Quantum Liquids ( Benjamin, Reading, Mass., 1966 ).Google Scholar
  50. Puff, R. D., and J. S. Tenn, Phys. Rev. A 1, 125 (1970).ADSCrossRefGoogle Scholar
  51. Reatto, L., and G. V. Chester, Phys. Rev. 155, 88 (1967).ADSCrossRefGoogle Scholar
  52. Rice, M. J., Phys. Rev. 159, 153 (1967); 162, 189 (1967); 163, 206 (1967).Google Scholar
  53. Rodriquez, L. J., H. A. Gersch, and H. A. Mook, Phys. Rev. A 9, 2085 (1974).ADSCrossRefGoogle Scholar
  54. Ron, A., in The Helium Liquids, eds. J. G. M. Armitage and I. E. Farquhar ( Academic Press. New York, 1975 ), pp. 211–240.Google Scholar
  55. Ruvalds, J., and A. Zawadowski, Phys. Rev. Lett. 25, 333, 632 (1970); Zawadowski, A., J. Ruvalds, and J. Solna, Phys. Rev. A 5, 399 (1972).Google Scholar
  56. Sköld, K., C. A. Pelizzari, R. Kleb, and G. E. Ostrowski, Phys. Rev. Lett. 37, 842 (1976).ADSCrossRefGoogle Scholar
  57. Svensson, E. V., and V. F. Sears, Physica 137B, 126 (1986).Google Scholar
  58. Wheatley, J. C., Rev. Mod. Phys. 47, 415 (1975).ADSCrossRefGoogle Scholar
  59. Woods, A. D. B., and V. F. Sears, Phys. Rev. Lett. 39, 415 (1977).ADSCrossRefGoogle Scholar
  60. Yang, C. N., Rev. Mod. Phys. 34, 694 (1962).ADSCrossRefGoogle Scholar
  61. Yoshida, K., Phys. Rev. 110, 769 (1958).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  1. 1.University of Tennessee and Oak Ridge National LaboratoryUSA

Personalised recommendations