Advertisement

Progress and Prospects in Soft X-Ray Holographic Microscopy

  • M. R. Howells
  • C. Jacobsen
  • J. Kirz
  • K. McQuaid
  • S. S. Rothman

Abstract

The majority of x-ray imaging experiments currently use the contact technique or x-ray analogues of the optical microscope, either in direct imaging or scanning mode, as described in Chapters 4−6. It is also possible, however, to obtain sample information by exploitation of the diffracted field, as is done in crystallography. To do this a method for determining and using the phases of the diffracted wave is needed. In the soft x-ray region, holography is one way to provide such a method. Other ways have been proposed by Sayre.1

Keywords

Complex Refractive Index Diffraction Tomography Refractive Index Distribution National Synchrotron Light Source Longitudinal Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Sayre, in: X-Ray Microscopy: Instrumentation and Biological Applications (P. C. Cheng and G. J. Jan, eds), pp. 13–31 and 213–223, Springer, Berlin (1987).Google Scholar
  2. 2.
    D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).PubMedCrossRefGoogle Scholar
  3. 3.
    S. Aoki, Y. Ichihara, and S. Kikuta, “X-ray hologram obtained by using synchrotron radiation,” Jpn. J. Appl. Phys. 11, 1857 (1972).CrossRefGoogle Scholar
  4. 4.
    S. Aoki and S. Kikuta, “X-ray holographic microscopy,” Jpn. J. Appl. Phys. 13, 1385–1392 (1974).CrossRefGoogle Scholar
  5. 5.
    J. Kirz, “Specimen damage considerations in biological microprobe analysis,” in: Scanning Electron Microscopy II (O. Johari and R. P. Becker, eds.), pp. 239–249, SEM Inc., AMF O’Hare (1979):Google Scholar
  6. 6.
    A. V. Baez, “A study in diffraction microscopy with special reference to X rays,” J. Opt. Soc. Am. 42, 756–762 (1952).CrossRefGoogle Scholar
  7. 7.
    G. C. Bjorklund, S. E. Harris, and J. F. Young, “Vacuum ultraviolet holography,” Appl. Phys. Lett. 25, 451–452 (1974).CrossRefGoogle Scholar
  8. 8.
    E. Spiller and R. Feder, “X-ray lithography,” in: X-ray Optics (H.-J. Queisser, ed.), Topics in Applied Physics, Vol. 22, pp. 35–92, Springer, Berlin (1977).Google Scholar
  9. 9.
    D. M. Shinozaki, P. C. Cheng, and R. Feder, “Soft x-ray induced roughness in PMMA,” in:Proceedings of the XI International Congress on Electron Microscopy (S. Maruse, T. Imura, and T. Suzuki, eds), pp. 1763–1764, Japanese Society of Electron Microscopy, Kyoto (1986).Google Scholar
  10. 10.
    B. Niemann, “Detective quantum efficiency of some film materials in the soft x-ray region,” Ann. N.Y. Acad. Sci. 342, 230–234 (1980).CrossRefGoogle Scholar
  11. 11.
    M. R. Howells, “Fundamental limits in x-ray holography,” in: X-ray Microscopy II (D. Sayre, M. Howells, J. Kirz, and H. Rarback, eds.), Springer Series in Optical Sciences, Vol. 56, pp. 263–271, Springer, Berlin (1988).Google Scholar
  12. 12.
    C. Jacobsen, “X-ray Holographic Microscopy of Biological Specimens Using an Undulator,” Ph.D. Thesis, State University of New York at Stony Brook (1988).Google Scholar
  13. 13.
    V. V. Aristov and G. A. Ivanova, “On the possibility of using holographic schemes in x-ray microscopy,” J. Appl. Cryst. 12, 19–24 (1979).CrossRefGoogle Scholar
  14. 14.
    D. Attwood, K. Halbach, and K. J. Kim, “Tunable coherent X rays,” Science 228, 1265–1272.Google Scholar
  15. 15.
    D. Joyeux, S. Lowenthal, F. Polack, and A. Bernstein, “X-ray microscopy by holography at LURE,” in: X-Ray Microscopy II (D. Sayre, M. Howells, J. Kirz, and H. Rarback, eds.), Springer Series in Optical Sciences, Vol. 56 pp. 246–252, Springer, Berlin (1988).Google Scholar
  16. 16.
    S. Aoki and S. Kikuta, “Soft x-ray interferometry and holography,” in: Short-Wavelength Coherent Radiation: Generation and Applications, Am. Inst. Phys. Conf. Proc. 147, 49–56Google Scholar
  17. 17.
    M. R. Howells, C. Jacobsen, J. Kirz, R. Feder, K. McQuaid, and S. Rothman, “X-ray holograms at improved resolution: A study of zymogen granules,” Science 238, 514–519 (1987).PubMedCrossRefGoogle Scholar
  18. 18.
    C. Jacobsen, J. Kirz, M. Howells, K. Mcquaid, S. Rothman, R. Feder, and D. Sayre, “Progress in high-resolution x-ray holographic microscopy,” in: X-Ray Microscopy II (D. Sayre, M. Howells, J. Kirz, and H. Rarback, eds.), Springer, Berlin (1988) in press.Google Scholar
  19. 19.
    L. Onural and D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132.Google Scholar
  20. 20.
    H. Rarback, S. Krinsky, P. Mortazavi, D. Shu, C. Jacobsen, and M. Howells, “An undulator source beamline for x-ray imaging,” Nucl. Inst. Meth. Phys. Res. A246, 159–162 (1986).CrossRefGoogle Scholar
  21. 21.
    R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography, Academic, New York (1971).Google Scholar
  22. 22.
    A. C. Kak, “Tomographic imaging with diffracting and non diffracting sources,” in: Array Signal Processing (S. Haykin, ed), pp. 351–423, Prentice-Hall, Englewood Cliffs, N.J. (1985).Google Scholar
  23. 23.
    A. J. Devaney, “Reconstructive tomography with diffracting wavefields,” Inverse Problems 2, 161–183 (1986).Google Scholar
  24. 24.
    E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Comm. 1, 153–156 (1969).CrossRefGoogle Scholar
  25. 25.
    V. I. Tatarski, Wave Propagation in a Turbulent Medium, McGraw-Hill, New York (1961).Google Scholar
  26. 26.
    A. J. Devaney, “Inverse scattering theory within the Rytov approximation,” Opt. Lett. 6, 374–375 (1981).PubMedCrossRefGoogle Scholar
  27. 27.
    L. Reimer, Transmission Electron Microscopy, Springer, Berlin (1984).Google Scholar
  28. 28.
    R. Glaeser, “Radiation damage and biological electron microscopy,” in: Physical Aspects of Electron Microscopy and Microbeam Analysis (R. Siegel and J. Beaman, eds.), pp. 205–227, Wiley, New York (1975).Google Scholar
  29. 29.
    W. S. Haddad, D. Cullen, K. Bowyer, C. K. Rhodes, and J. C. Solem, “Design of a Fourier transform holographic microscope,” in: X-Ray Microscopy II (D. Sayre, M. Howells, J. Kirz, and H. Rarback, eds.), Springer Series in Optical Sciences, Vol. 56, pp. 284–287, Springer,Berlin (1988).Google Scholar
  30. 30.
    M. R. Howells and J. Kirz, “Coherent soft X rays in high-resolution imaging,” in: Free-Electron Generation of Extreme Ultraviolet Coherent Radiation, Am. Inst. Phys. Conf. Proc. 118, 85–95 (1983).Google Scholar
  31. 31.
    Using the latest soft x-ray undulator beamline (XI) at the NSLS, which began operations in late 1988, the hologram recording time has come down to about 3 minutes.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • M. R. Howells
    • 1
  • C. Jacobsen
    • 1
  • J. Kirz
    • 2
  • K. McQuaid
    • 3
  • S. S. Rothman
    • 3
  1. 1.Center for X-Ray Optics, Lawrence Berkeley LaboratoryBerkeleyUSA
  2. 2.Department of PhysicsState University of New York at Stony BrookStony BrookUSA
  3. 3.Schools of Medicine and DentistryUniversity of California-San FranciscoSan FranciscoUSA

Personalised recommendations