Skip to main content

Progress and Prospects in Soft X-Ray Holographic Microscopy

  • Chapter
Modern Microscopies

Abstract

The majority of x-ray imaging experiments currently use the contact technique or x-ray analogues of the optical microscope, either in direct imaging or scanning mode, as described in Chapters 4−6. It is also possible, however, to obtain sample information by exploitation of the diffracted field, as is done in crystallography. To do this a method for determining and using the phases of the diffracted wave is needed. In the soft x-ray region, holography is one way to provide such a method. Other ways have been proposed by Sayre.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Sayre, in: X-Ray Microscopy: Instrumentation and Biological Applications (P. C. Cheng and G. J. Jan, eds), pp. 13–31 and 213–223, Springer, Berlin (1987).

    Google Scholar 

  2. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).

    Article  PubMed  CAS  Google Scholar 

  3. S. Aoki, Y. Ichihara, and S. Kikuta, “X-ray hologram obtained by using synchrotron radiation,” Jpn. J. Appl. Phys. 11, 1857 (1972).

    Article  Google Scholar 

  4. S. Aoki and S. Kikuta, “X-ray holographic microscopy,” Jpn. J. Appl. Phys. 13, 1385–1392 (1974).

    Article  Google Scholar 

  5. J. Kirz, “Specimen damage considerations in biological microprobe analysis,” in: Scanning Electron Microscopy II (O. Johari and R. P. Becker, eds.), pp. 239–249, SEM Inc., AMF O’Hare (1979):

    Google Scholar 

  6. A. V. Baez, “A study in diffraction microscopy with special reference to X rays,” J. Opt. Soc. Am. 42, 756–762 (1952).

    Article  Google Scholar 

  7. G. C. Bjorklund, S. E. Harris, and J. F. Young, “Vacuum ultraviolet holography,” Appl. Phys. Lett. 25, 451–452 (1974).

    Article  CAS  Google Scholar 

  8. E. Spiller and R. Feder, “X-ray lithography,” in: X-ray Optics (H.-J. Queisser, ed.), Topics in Applied Physics, Vol. 22, pp. 35–92, Springer, Berlin (1977).

    Google Scholar 

  9. D. M. Shinozaki, P. C. Cheng, and R. Feder, “Soft x-ray induced roughness in PMMA,” in:Proceedings of the XI International Congress on Electron Microscopy (S. Maruse, T. Imura, and T. Suzuki, eds), pp. 1763–1764, Japanese Society of Electron Microscopy, Kyoto (1986).

    Google Scholar 

  10. B. Niemann, “Detective quantum efficiency of some film materials in the soft x-ray region,” Ann. N.Y. Acad. Sci. 342, 230–234 (1980).

    Article  Google Scholar 

  11. M. R. Howells, “Fundamental limits in x-ray holography,” in: X-ray Microscopy II (D. Sayre, M. Howells, J. Kirz, and H. Rarback, eds.), Springer Series in Optical Sciences, Vol. 56, pp. 263–271, Springer, Berlin (1988).

    Google Scholar 

  12. C. Jacobsen, “X-ray Holographic Microscopy of Biological Specimens Using an Undulator,” Ph.D. Thesis, State University of New York at Stony Brook (1988).

    Google Scholar 

  13. V. V. Aristov and G. A. Ivanova, “On the possibility of using holographic schemes in x-ray microscopy,” J. Appl. Cryst. 12, 19–24 (1979).

    Article  Google Scholar 

  14. D. Attwood, K. Halbach, and K. J. Kim, “Tunable coherent X rays,” Science 228, 1265–1272.

    Google Scholar 

  15. D. Joyeux, S. Lowenthal, F. Polack, and A. Bernstein, “X-ray microscopy by holography at LURE,” in: X-Ray Microscopy II (D. Sayre, M. Howells, J. Kirz, and H. Rarback, eds.), Springer Series in Optical Sciences, Vol. 56 pp. 246–252, Springer, Berlin (1988).

    Google Scholar 

  16. S. Aoki and S. Kikuta, “Soft x-ray interferometry and holography,” in: Short-Wavelength Coherent Radiation: Generation and Applications, Am. Inst. Phys. Conf. Proc. 147, 49–56

    Google Scholar 

  17. M. R. Howells, C. Jacobsen, J. Kirz, R. Feder, K. McQuaid, and S. Rothman, “X-ray holograms at improved resolution: A study of zymogen granules,” Science 238, 514–519 (1987).

    Article  PubMed  CAS  Google Scholar 

  18. C. Jacobsen, J. Kirz, M. Howells, K. Mcquaid, S. Rothman, R. Feder, and D. Sayre, “Progress in high-resolution x-ray holographic microscopy,” in: X-Ray Microscopy II (D. Sayre, M. Howells, J. Kirz, and H. Rarback, eds.), Springer, Berlin (1988) in press.

    Google Scholar 

  19. L. Onural and D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132.

    Google Scholar 

  20. H. Rarback, S. Krinsky, P. Mortazavi, D. Shu, C. Jacobsen, and M. Howells, “An undulator source beamline for x-ray imaging,” Nucl. Inst. Meth. Phys. Res. A246, 159–162 (1986).

    Article  Google Scholar 

  21. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography, Academic, New York (1971).

    Google Scholar 

  22. A. C. Kak, “Tomographic imaging with diffracting and non diffracting sources,” in: Array Signal Processing (S. Haykin, ed), pp. 351–423, Prentice-Hall, Englewood Cliffs, N.J. (1985).

    Google Scholar 

  23. A. J. Devaney, “Reconstructive tomography with diffracting wavefields,” Inverse Problems 2, 161–183 (1986).

    Google Scholar 

  24. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Comm. 1, 153–156 (1969).

    Article  Google Scholar 

  25. V. I. Tatarski, Wave Propagation in a Turbulent Medium, McGraw-Hill, New York (1961).

    Google Scholar 

  26. A. J. Devaney, “Inverse scattering theory within the Rytov approximation,” Opt. Lett. 6, 374–375 (1981).

    Article  PubMed  CAS  Google Scholar 

  27. L. Reimer, Transmission Electron Microscopy, Springer, Berlin (1984).

    Google Scholar 

  28. R. Glaeser, “Radiation damage and biological electron microscopy,” in: Physical Aspects of Electron Microscopy and Microbeam Analysis (R. Siegel and J. Beaman, eds.), pp. 205–227, Wiley, New York (1975).

    Google Scholar 

  29. W. S. Haddad, D. Cullen, K. Bowyer, C. K. Rhodes, and J. C. Solem, “Design of a Fourier transform holographic microscope,” in: X-Ray Microscopy II (D. Sayre, M. Howells, J. Kirz, and H. Rarback, eds.), Springer Series in Optical Sciences, Vol. 56, pp. 284–287, Springer,Berlin (1988).

    Google Scholar 

  30. M. R. Howells and J. Kirz, “Coherent soft X rays in high-resolution imaging,” in: Free-Electron Generation of Extreme Ultraviolet Coherent Radiation, Am. Inst. Phys. Conf. Proc. 118, 85–95 (1983).

    Google Scholar 

  31. Using the latest soft x-ray undulator beamline (XI) at the NSLS, which began operations in late 1988, the hologram recording time has come down to about 3 minutes.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Howells, M.R., Jacobsen, C., Kirz, J., McQuaid, K., Rothman, S.S. (1990). Progress and Prospects in Soft X-Ray Holographic Microscopy. In: Duke, P.J., Michette, A.G. (eds) Modern Microscopies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1467-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1467-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8777-3

  • Online ISBN: 978-1-4613-1467-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics