Skip to main content

Topological Rough Algebras

  • Chapter
Rough Sets and Data Mining

Abstract

It is known ([15]) that the propositional aspect of rough set theory is adequately captured by the modal system S5. A Kripke model gives the approximation space (A,R) in which well formed formulas are interpreted as rough sets. Banejee and Chakraborty ([1]) introduced a new binary connective in S5, the intended interpretation of which was the notion of rough equality, defined by Pawlak in 1982. They called the resulting Lindenbaum-Tarski like algebra a rough algebra. We show here that their rough algebra is a particular case of a quasi-Boolean algebra (as introduced in [4]). It also leads to a definition of the new classes of algebras, called topological quasi-Boolean algebras2 and topological rough algebras. We introduce, following Rasiowa and Białynicki-Birula’s representation theorem for the quasi-Boolean algebras ([4], [20]), a notion of quasi field of sets and generalize it to a new notion of a topological quasi field of sets. We use it to give the representation theorems for the topological quasi-Boolean algebras and topological rough algebras, and hence to provide a mathematical characterization of the rough algebra.

This paper was initiated in November 1993 during the author’s discussions with M. Banejee who also visited the Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland. The research was supported by a Fulbright grant no. 93-68818 (1993-1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Banerjee, M.K. Chakraborty, “Rough Consequence and Rough Algebra”, Rough Sets, Fuzzy Sets and Knowledge Discovery, Of the International Workshop on Procedings of Rough Sets and Knowledge Discovery, (RSKD’93), Banf, Alberta, Canada, 1993, W.P. Ziarko, (Ed.), Springer-Verlag, London, (1994), pp. 196–207.

    Google Scholar 

  2. M. Banerjee, M.K. Chakraborty, “Rough algebra”, Bull. Polish Acad. Sc. (Math.), vol.41, No.4, 1993, pp. 299–297.

    MathSciNet  MATH  Google Scholar 

  3. M. Banerjee, “A Cathegorical Approach to the Algebra and Logic of the indiscernible”, Ph.D dissertation, Mathematics Department, University of Calcutta, India.

    Google Scholar 

  4. Bialynicki-Birula, A., Rasiowa, H., “On the representation of quasi-Boolean algebras”, Bull. Ac. Pol. Sci. CI. III, 5 (1957), pp. 259–261.

    MathSciNet  Google Scholar 

  5. Henkin, L., “An algebraic characterization of Quantifiers”, Fundamenta Mathematicae 37 (1950), pp. 63–74.

    MathSciNet  MATH  Google Scholar 

  6. Henkin, L., “A class of non-normal models for classical sentential logic”, The Journal of Symbolic Logic 28 (1963), p. 300.

    MathSciNet  Google Scholar 

  7. Kalman, J. A., “Lattices with involution”, Trans.Amer. Math. Soc. 87 (1958), pp. 485–491.

    Article  MathSciNet  MATH  Google Scholar 

  8. Kripke, S., “Semantics analysis of intuitionistic logic”, Proc. of the Eight Logic Colloqium, Oxford 1963, edited by J.N. Crossley & M.N.E. Dummet, pp. 92–130, North Holland Publishing C. (1965).

    Google Scholar 

  9. Moisil, G. C., “Recherches sur l’algebre de la logique”, Annales Sc. de l’Univerite de Jassy 22 (1935), pp. 1–117.

    Google Scholar 

  10. Nelson, D., “Constructible falsity”, The Journal of Symbolic Logic 14 (1949), pp. 16–26.

    Article  MathSciNet  MATH  Google Scholar 

  11. Nöbeling, G., “Grundlagen der analitishen Topologie”, Berlin. Götingen, Heilderberg, 1954.

    Google Scholar 

  12. Markov, A.A., “Konstriktivnajalogika”, Usp. Mat. Nauk 5 (1950), pp. 187–188.

    Google Scholar 

  13. McKinsey, J. C.C., “A solution of the decision problem for the Lewis systems S.2 and S.4 with an application to topology”, The Journal of Symbolic Logic 6 (1941), pp. 117–188.

    Article  MathSciNet  Google Scholar 

  14. McKinsey, J. C.C., Tarski, A., “The algebra of topology”, Annals of Mathematics 45 (1944), pp. 141–191.

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Orlowska, “Semantics of vague concepts”, In (Dorn, G., Weingartner, P. (eds)) Foundations of Logic and Linguistics, Selected Contributions to the 7th International Congress of Logic, Methodology and Philosophy of Science, Saltzburg 1983, Plenum Press, pp. 465–482.

    Google Scholar 

  16. Z. Pawlak, “Rough Sets”, Int. J. Comp. Inf. Sci., 11 (1982), pp. 341–356.

    Article  MathSciNet  MATH  Google Scholar 

  17. Rasiowa, H., Sikorski, R., “A proof of completeness theorem of Gódel”, Fundamenta Mathematicae 37 (1950), pp. 193–200.

    MathSciNet  MATH  Google Scholar 

  18. Rasiowa, H., “Algebraic treatement of the functional calculi of Heyting and Lewis”, Fundamenta Mathematicae, 38 (1951), pp. 99–126.

    MathSciNet  MATH  Google Scholar 

  19. Rasiowa, H., Sikorski, R., “The Mathematics of Metamathematics”, PWN, Warszawa, 1963.

    MATH  Google Scholar 

  20. Rasiowa, H., “An Algebraic Approach to Non-Classical Logics”, Studies in Logic and the Foundations of Mathematics, Volume 78, North-Holland Publishing Company, Amsterdam, London - PWN, Warsaw, (1974).

    Google Scholar 

  21. Stone, M. H., “Boolean algebras and their relation to topology”, Proc. Nat. Ac. Sci. 20 (1934), pp. 197–202.

    Article  Google Scholar 

  22. Stone, M. H., “Topological representation of distributive lattices and Brouwerian logics”, Cas.Mat. Fys. 67 (1937), pp. 1–25.

    Google Scholar 

  23. Tarski, A., “Grundzüge des Syntemenkalküls”. Ester Teil. Fundamenta Mathematicae 25 (1935), pp. 503–526.

    MATH  Google Scholar 

  24. Tarski, A., “Der Aussagencalcul und die Topologie”, Fundamenta Mathematicae 31 (1938), pp. 103–134.

    Google Scholar 

  25. Thomason, R. H., “A semantical study of constructible falsity”, Zeitschr. für Math. Logik und Gründl, der Math. 15 (1969), pp. 247–257.

    Article  MathSciNet  MATH  Google Scholar 

  26. Vorobiev, N.N., “Konstructivnoje isčislenie vyskasivanij s silnym otrizaniem”, Dokl. Akad. Nauk SSSR 85 (1952), pp. 456–468.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wasilewska, A. (1997). Topological Rough Algebras. In: Rough Sets and Data Mining. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1461-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1461-5_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8637-0

  • Online ISBN: 978-1-4613-1461-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics