Skip to main content

Low Power Digital Multipliers

  • Chapter
Application Specific Processors

Part of the book series: The Kluwer International Series in Engineering and Computer Science ((SECS,volume 380))

Abstract

CMOS digital multipliers have high power dissipation in comparison with other circuits due to carry propagation and spurious transitions. Techniques to reduce switching activity and improve the performance at the algorithm and circuit level are presented. A new concept to reduce switching activity using combinational self-timed elements and bypassing logic blocks to eliminate redundant operations is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. K. Callaway and E. E. Swartzlander, Jr., “Optimizing Multipliers for WSI,”1993 Proceedings, Fifth Annual International Conference on Wafer Scale Integration, pp. 85–94, 1993.

    Google Scholar 

  2. C. Lemmonds and S. Shetti, “A Low Power 16 by 16 multiplier using Transition Reduction Circuitry,” International Workshop on Low Power Design, pp. 139–142, 1994.

    Google Scholar 

  3. M. Borah, R. Owens and M. Irwin, “High-throughput and Low-power DSP Using Clocked-CMOS Circuitry,” International Symposium on Low Power Design, pp. 139–144, 1995.

    Google Scholar 

  4. E. Musoll and J. Cortadella, “Low-Power Array Multipliers with Transition-Retaining Barriers,”Fifth International Workshop on Power and Timing Modeling, October 1995.

    Google Scholar 

  5. V. Moshnyaga and K. Tamary, “A Comparative Study of Switching Activity Reduction Techniques for Design of Low-Power Multipliers,” Symposium on Circuits and Systems, pp. 1560–1563, April 1995.

    Google Scholar 

  6. K. Yano, T. Yamanaka, T. Nishida, M. Saito, K. Shimohigashi and A. Shimizu, “A 3.8-ns CMOS 16X16-b Multiplier Using Complementary Pass-Transistor Logic,”IEEE Journal of Solid-St ate Circuits, vol. 25, pp. 388–395, 1990.

    Article  Google Scholar 

  7. A. P. Chandrakasan, S. Sheng and R. W. Brodersen, “Low-Power CMOS Digital Design,” IEEE Journal of Sold-State Circuits, vol. 27, pp. 473–483, 1992.

    Article  Google Scholar 

  8. N. H. Weste and K. Eshraghian, Principles of CMOS VLSI Design: A Systems Perspective, Addison Wesley, pp. 304–307, 1993.

    Google Scholar 

  9. A. Parameswar, H. Hara and T. Skurai, “A High Speed, Low Power, Swing Restored Pass-Transistor Logic Based Multiply and Accumulate Circuit for Multimedia Applications,” IEEE 1994 Custom Integrated Circuits Conference, pp. 278–281, 1994.

    Google Scholar 

  10. S. D. Pezaris, “A 40 ns 17-Bit by 17-Bit Array Multiplier,” IEEE Trans. Computers, vol. C-20, pp. 442–447, 1971.

    Article  Google Scholar 

  11. L. Dadda, “Some schemes for parallel multipliers,”Alta Frequenza, vol. 34, pp. 346–356, May 1965.

    Google Scholar 

  12. C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions on Electronics Computers, vol. EC-13, pp. 14–17, 1964.

    Article  Google Scholar 

  13. A. D. Booth, “A Signed Binary Multiplication Technique,” Quarterly Journal of Mechanics and Applied Mathematics, vol. 4, pt. 2, pp. 236–240, 1951.

    Article  MathSciNet  MATH  Google Scholar 

  14. O. L MacSorley, “High-Speed Arithmetic in Binary Computers,” IRE Proceedings, vol 49, pp. 67–91, 1961.

    Article  MathSciNet  Google Scholar 

  15. M. Annaratone and W. Z. Shen, “The Design of an LSI Booth Multiplier,” Carnegie Mellon University, Thesis Report, no. CMU-CS-84–150, 1984.

    Google Scholar 

  16. O. Salomon, J. M. Green, and H. Klar, “General Algorithms for a Simplified Addition of 2’s Complement Numbers,” IEEE Journal of Solid-State Circuits, vol. 30, pp. 839–844, 1995.

    Article  Google Scholar 

  17. B.S. Carlson and C.Y. Roger Chen, “Performance Enhancement of CMOS VLSI Circuits by Transistor Reordering,” 30th Design Automation Conference, pp. 361–366, 1993.

    Google Scholar 

  18. S. C. Prasad and K. Roy, “Circuit Optimization for Minimization of Power Consumption under Delay Constraint,” 1994 International Workshop on Low Power Design, pp. 15–20, 1994.

    Google Scholar 

  19. C. H. Tan and J. Allen, “Minimization of Power in VLSI Circuits Using Transistor Sizing, Input Ordering, and Statistical Power Estimation,” 1994 International Workshop on Low Power Design, pp. 75–80, 1994.

    Google Scholar 

  20. M. Borah, R. M. Owens and M. J. Irwin, “Transistor Sizing for Minimizing Power Consumption of CMOS Circuit under Delay Constraint,”1994 International Workshop on Low Power Design, pp. 167–172, 1994.

    Google Scholar 

  21. M. Uya, K. Kaneko, and J. Yasui, “A CMOS floating point multiplier,” ISSCC Digest of Technical Papers, pp. 90–91, 1984.

    Google Scholar 

  22. C.X. Huang, B. Zhang, A-C. Deng, and B. Swirski, “The Design and Implementation of PowerMill,” Proceedings 1995 International Symposium on Low Power Design, pp. 105–109, 1994.

    Google Scholar 

  23. K. van Berkel, R. Burgess, J. Kessels, M. Roncken, F. Schalij and A. Peeters, “Asynchronous Circuits for Low Power: A DCC Error Corrector,” IEEE Design & Test of Computers, vol. 11, no. 2, pp. 22–32, Summer 1994.

    Article  Google Scholar 

  24. J. Haans, K. van Berkel, A. Peeters and F. Schalij, “Asynchronous Multipliers as Combinational Handshake Circuits,” Asynchronous Design Methodologies: Proceedings of the IFIP WG10.5 Working conference on Asynchronous Design Methodologies, Manchester, UK, pp. 149–164, April 1993.

    Google Scholar 

  25. S. Lu, “Implementations of Iterative Networks with CMOS Differential Logic,” IEEE Journal of Solid-State Circuits, vol. 23, pp. 1013–1017, 1988.

    Article  Google Scholar 

  26. W. M. Waite, “The Production of Completion Signals by Asynchronous, Iterative Networks,”IEEE Transactions on Electronic Computers, pp. 83–86, 1964.

    Google Scholar 

  27. E. de Angel and E. E. Swartzlander, Jr., “An Ultra Low Power Multiplier,” International Conference on Signal Processing Applications & Technology, pp. 2118–2122, 1995.

    Google Scholar 

  28. E. de Angel, “Low Power Digital Multiplication,” Ph.D. Dissertation, University of Texas at Austin, Austin, Texas, 1996.

    Google Scholar 

  29. L. G. Heller, W. R. Griffin, J. W. Davis, and N. G. Thoma, “Cascode Voltage Switch Logic: A differential CMOS logic family,” International Solid-State Circuits Conference, pp. 16–17, 1984.

    Google Scholar 

  30. G. M. Jacobs and R. W. Brodersen, “A Fully Asynchronous Digital Signal Processor Using Self-Timed Circuits,”IEEE Journal of Solid-State Circuits, vol. 25, pp. 1526–1537, 1990.

    Article  Google Scholar 

  31. T. E. Williams, “A Zero-Overhead Self-Timed 160-ns 54-db CMOS Divider,” IEEE Journal of Solid-State Circuits, vol. 26, 1991, pp. 1651–1661.

    Article  Google Scholar 

  32. T. E. Williams, “Latency and Throughput Tradeoffs in Self-Timed Speed-Independent Pipelines and Rings,” Technical Report CSL-TR-90–431, Computer Systems Laboratory, Stanford University, Stanford, CA, August 1990.

    Google Scholar 

  33. K. M. Chu and D. L. Puffrey, “Design Procedures for Differential Cascode Voltage Switch Circuits,”IEEE Journal of Solid-State Circuits, vol. 21, pp. 1082–1087, Dec. 1986.

    Article  Google Scholar 

  34. S. Lu, “Self-Timed Arithmetic Structures in CMOS Differential Logic,” Ph.D. issertation, University of California, Los Angeles, California, 1991.

    Google Scholar 

  35. A. J. Acosta, M. Valencia, A. Barriga, M. J. Bellido, and J. L. Huertas, “SODS: A New CMOS Differential-Type Structure,” IEEE Journal of Solid-State Circuits, vol. 30, pp. 835–838, July 1995.

    Article  Google Scholar 

  36. D. Somasekhar and K. Roy, “Differential Current Switch Logic: A Low Power DCVS Logic Family,” Twenty-first European Solid-State Circuits Conference, pp. 182–185, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Kluwer Academic Publishers

About this chapter

Cite this chapter

de Angel, E. (1997). Low Power Digital Multipliers. In: Swartzlander, E.E. (eds) Application Specific Processors. The Kluwer International Series in Engineering and Computer Science, vol 380. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1457-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1457-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8635-6

  • Online ISBN: 978-1-4613-1457-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics