Skip to main content

Flat Panel Displays for Portable Systems

  • Chapter
Technologies for Wireless Computing

Abstract

Flat panel display technologies for portable and personal information systems are reviewed. The display sub-system performance requirements, and the metrics for evaluating display technologies for portable systems are discussed. The current display technology choices for high performance portable systems are active matrix liquid crystal display (AMLCD) and field emitter display (FED). AMLCD is at the forefront at an advanced state of development, and it is already in mass production for notebook computer applications. Because of the huge market size, AMLCD technology continues to be developed at an aggressive pace to address the needs of the future portable systems. On the other hand, FED technology is not currently in mass production, but it is being developed at rapid pace; Impressive technology capabilities and demonstration displays have already been shown. This review focuses on the current status and future development trends in both the these display technologies for application to portable systems. The current status of the reflective LCDs and their future development trends are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Bargodia et al., “Vision, issues and architecture for nomadic computing,” IEEE Personal Communications, p. 14, Dec. 1995.

    Google Scholar 

  2. A.P. Chandrakasan et al., “Minimizing power consumption in digital CMOS circuits,” Proceedings of the IEEE, Vol. 83, No. 2, p. 498, April 1995.

    Article  Google Scholar 

  3. E.P. Harris et al., “Technology directions for portable computers,” Proceedings of the IEEE, Vol. 83, No. 2, p. 636, April 1995.

    Article  Google Scholar 

  4. J.I. Pankove, Display Devices, Springier-Verlag, ISBN-3–540–09868–2, 1980.

    Google Scholar 

  5. H.J. Plach et al., “Liquid crystals for active matrix displays,” Solid State Technology, p. 186, June 1992.

    Google Scholar 

  6. C.N. King, “Electroluminescent displays,” Conference Record of the 1994 International Display Research Conference, p. 69, Oct. 1994.

    Google Scholar 

  7. R. Khormaei, et al., “A 1280 x 1024 active matrix EL display,” Digest of Technical Papers, International Display Symposium of the Society of Information Display, p. 891, May 1995.

    Google Scholar 

  8. L. Arbuthnot et al., “A 2000 lpi active-matrix EL display,” Technical Digest of International Symposium of the Society for Information Display, p. 374, May 1996.

    Google Scholar 

  9. PS. Friedman, “Materials issues related to large size color plasma displays,” Conference Record of the 1994 International Display Research Conference, p. 69, Oct. 1994.

    Google Scholar 

  10. T. Nakamura et al., “Drive for 40-in.-diagonal full-color ac plasma display,” Technical Digest of International Symposium of the Society for Information Display, p. 807, May 1995.

    Google Scholar 

  11. H. Doyeux et al. “A high resolution 19-in. 1024 × 768 color ac PDP, ” Technical Digest of International Symposium of the Society for Information Display, p. 811, May 1995.

    Google Scholar 

  12. J.L. Deschamps, “Recent developments and results in color- plasma-display technology,” Technical Digest of International Symposium of the Society for Information Display, p. 315, May 1994.

    Google Scholar 

  13. R.W. Schumacher, “Automotive display trends,” Technical Digest of International Symposium of the Society for Information Display, p. 9, May 1996.

    Google Scholar 

  14. J.R. Troxell et al., “TFT-addressed high-brightness reconfig- urable vacuum fluorescent display,” Technical Digest of International Symposium of the Society for Information Display, p. 153, May 1996.

    Google Scholar 

  15. J.R. Troxell et al., “Thin-film transistor fabrication for high brightness reconfigurable vacuum fluorescent displays,” IEEE Transactions on Electron Devices, Vol. 43, No. 5, p. 706, May 1996.

    Article  Google Scholar 

  16. K. Kinoshita et al., “Active-matrix VFD with phosphor on memory chip,” Technical Digest of International Symposium of the Society for Information Display, p. 452, May 1996.

    Google Scholar 

  17. P. Pleshko et al., “Overview and status of information displays,” SID 1992 Seminar Lecture Notes, Vol. 1, M-0, pp. 1–76, Boston, USA.

    Google Scholar 

  18. B.S. Scheuble, “Liquid crystal displays with high information content,” SID’91 Seminar Notes, Vol. II, F-2,1991.

    Google Scholar 

  19. T.J. Scheffer, “Super twisted nematic (STN) LCDs,” SID’95 Seminar Notes, Vol. I, M-2, 1995.

    Google Scholar 

  20. C.H. Gooch and H.A. Tarry, J. Phys. D: Appl Phys. Vol. 8, p. 1575,1975.

    Article  Google Scholar 

  21. K.R. Sarma, H. Franklin, M. Johnson, K. Frost, and A. Bernot, “Active matrix LCDs using grayscale in halftone methods,” Proc. of the SID, Vol. 31, No. 1, p. 7, 1990

    Google Scholar 

  22. K.R. Sarma et al., SID’91 Digest, p. 555, 1991.

    Google Scholar 

  23. E. Haim, R. Mc Cartney, C. Penn, T. Inada, T. Unate, T. Sunata, K. Taruta, Y. Ugai, and S. Aoki, “Full-color grayscale LCD with wide viewing angle for avionic applications,” SID’94 Applications Digest, p. 23, 1994.

    Google Scholar 

  24. P.M. Alt and P. Pleshko, IEEE Trans. Electron Dev., Vol. ED-21, p. 146, 1974.

    Article  Google Scholar 

  25. T.J. Scheffer and J. Nerring, Applied Physics Letters, Vol. 45, p. 1021, 1984.

    Article  Google Scholar 

  26. T. Scheffer and B. Clifton, “Active addressing method for high-contrast video-rate STN displays,” SID’92 Digest, p. 228, 1992.

    Google Scholar 

  27. H. Muraji et al., “A 9.4-in. color VGA F-STN display with fast response time and high contrast ratio by using MLS method,” SID’94 Digest, p. 61, 1994.

    Google Scholar 

  28. Japan Electronics Show, Osaka, Oct. 1995; Sharp Corp. Exhibited 28” Diagonal AMLCD.

    Google Scholar 

  29. S. Higashi et al., “A 1.8-in Poly-Si TFT-LCD for HDTV projectors with a 5 V fully integrated driver,” SID’95 Digest, p. 81, 1995.

    Google Scholar 

  30. Z. Yaniv et al., SID’86Digest, p. 278, 1986.

    Google Scholar 

  31. M. Toyoma et al., “A large-area diode-matrix LCD using SiNx layer,” SID’87Digest, p. 155, 1987.

    Google Scholar 

  32. Y. Nano et al., “Characterization of sticking effects in TFT- LCD,” SID’90 Digest, p. 404, 1990.

    Google Scholar 

  33. H.L. Ong, Japan Display’92, p. 247, 1992.

    Google Scholar 

  34. J. Mukai et al., “A viewing angle compensator film for TFT-LCDs,” Asia Display’95, p. 949, 1995.

    Google Scholar 

  35. A. Erhart, “Module electronics for flat-panel displays,” SID’95 Application Seminar Notes, 1995.

    Google Scholar 

  36. J.P. Salerno et al., “Single crystal silicon transmissive AMLCD,” SID’92 Digest, p. 555, 1992.

    Google Scholar 

  37. K.R. Sarma et al., “Silicon-on-quartz (SOQ) for high- resolution liquid-crystal light valves,” SID’94 Digest, p. 419, 1994.

    Google Scholar 

  38. S. Inoue et al., “425°C Poly-Si TFT technology and its applications to large size LCDs and integrated digital data drivers,” Asia Display’95, p. 339, 1995.

    Google Scholar 

  39. A. Stein et al., “Plastic LCD substrates that combine optical quality and high use temperature,” SID’96 Applications Digest, p. 11, 1996.

    Google Scholar 

  40. M.F. Weber, “Retroreflective sheet polarizer,” SID’93 Digest, p. 669 1993.

    Google Scholar 

  41. D. Coates et al., “High-performance wide-bandwidth reflective cholesteric polarizers,” SID’96Applications Digest, p. 67,1996.

    Google Scholar 

  42. S.S. Kim, et al., “High aperture and fault-tolerant pixel structure for TFT-LCDs,” SID’95 Digest, p. 15, 1995.

    Google Scholar 

  43. “Japan Electronics Show,” Oct. 1995, Sharp exhibited AMLCDs with VGA resolution with a pixel aperture ratio of over 82%.

    Google Scholar 

  44. K. Takatori, et al., Japan Display’92, p. 591, 1992.

    Google Scholar 

  45. S. Zimmerman et al., “Viewing angle enhancement system for LCDs,” SID’95 Digest, p. 793, 1995.

    Google Scholar 

  46. T. Konno, et al., “OCB-cell using polymer stabilized bend alignment,” Asia Display’95, p. 581, 1995.

    Google Scholar 

  47. M. Ohta, et al., “Development of super TFT-LCDs with in-plane switching mode,” Asia Display’95, p. 707, 1995.

    Google Scholar 

  48. C. Y. Tai et al., “A transparent front lighting system for reflective-type displays,” SID’95 Digest, p. 375, 1995.

    Google Scholar 

  49. S. Mitsui, Y. Shimada, K. Yamamoto, T. Takamatsu, N. Kimura, S. Kozaki, S. Ogawa, and T. Uchida, SID’92 Digest of technical papers, p. 437, 1992.

    Google Scholar 

  50. J.W. Doane, D.K. Yang, and Z. Yaniv, Proc. 12th Intnl. Display Research Conference, p. 73, 1992.

    Google Scholar 

  51. K. Tanaka, K. Kato, S. Tsuru, and S. Sakai, J. Society for Information Display, Vol. 4, p. 37, 1994.

    Article  Google Scholar 

  52. Z. Yaniv et al., “Electronic news paper display,” Asia Display’95, p. 113,1995.

    Google Scholar 

  53. R. Meyer et al., “Microtips fluorescent display,” Japan Display, p. 513,1986.

    Google Scholar 

  54. C.A. Spindt et al., “Field emitter arrays applied to vacuum fluorescent display,” IEEE Transactions on Electron Devices, Vol. 36, No. 1, p. 225, Jan. 1989.

    Article  Google Scholar 

  55. C.A. Spindt et al., “Field emitter arrays for vacuum microelectronics,” IEEE Transactions on Electron Devices, Vol. 38, No. 10, p. 2355, Oct. 1991.

    Article  Google Scholar 

  56. C.A. Spindt et al., “Field emitter array development for microwave applications,” 1995 IEEE International Electron Device Meeting Technical Digest, p. 389.

    Google Scholar 

  57. P. Vaudaine et al., “Microtips fluorescent display,” IEEE IEDM Technical Digest, p. 197, 1991.

    Google Scholar 

  58. A. Ghis, et al., “Sealed vacuum devices: Fluorescent microtip displays,” IEEE Transactions on Electron Devices, Vol. 38, No. 10, p. 2320, Oct. 1991.

    Article  Google Scholar 

  59. F. Leroux et al., “Microtips display addressing,” Technical Digest of International Symposium of the Society for Information Display, p. 437, May 1991.

    Google Scholar 

  60. R.H. Fowler et al., “Electron emission in intense electric fields,” Proceedings of the Royal Society, London, Series A, Vol. 119, p. 173, 1928.

    Google Scholar 

  61. R.H. Good et al., “Field emission,” in Handbuch der Physik, Springer, Vol. XXI, 1956.

    Google Scholar 

  62. C.A. Spindtetal., “Physical properties of thin-film field emission cathodes with molybdenum cones,” Journal of Applied Physics, Vol. 47, No. 12, p. 5248, Dec. 1976.

    Article  Google Scholar 

  63. H.F. Gray et al., “A vacuum field effect transistor using silicon field emitter arrays,” IEEE-IEDM Technical Digest, p. 7776, 1986.

    Google Scholar 

  64. H.H. Busta, “Volcano-shaped field emitters for large area displays,” IEEE International Electron Device Meeting Technical Digest, p. 405, 1995.

    Google Scholar 

  65. C.A. Spindt et al., “Field emission cathode array development for high-current-density applications,” Applications of Surface Science, Vol. 16, p. 286,1993.

    Google Scholar 

  66. A.I. Akinwande et al., “Nanometer scale thin-film-edge emitter devices with high current density characteristics,”1992 IEEE IEDM Technical Digest, p. 367.

    Google Scholar 

  67. A.I. Akinwande et al., “Field-emission lamp for avionic AMLCD backlighting,” Technical Digest of International Symposium of the Society for Information Display, p. 745, May 1996.

    Google Scholar 

  68. N. Kumar et al., “Development of nano-crystalline diamond-based field-emission displays,” Technical Digest of International Symposium of the Society for Information Display, p. 43, May 1994.

    Google Scholar 

  69. D. Cathey, “Field emission displays,” Proceedings of the International Symposium on VLSI Technology, Systems and Applications, pp. 131–136, 1995.

    Google Scholar 

  70. A. Palevsky et al., “Field emission displays: A 10,000- fL high-efficiency field-emission display,”Technical Digest of International Symposium of the Society for Information Display, p. 55, May, 1995.

    Google Scholar 

  71. Presentations and Demonstrations by Silicon Video Corporation at the ARPA High Definition Systems Information Conference, Arlington, VA, April 15–18, 1996.

    Google Scholar 

  72. Presentations and Demonstrations by FED Corporation at the ARPA High Definition Systems Information Conference, Arlington, VA, April 15–18, 1996.

    Google Scholar 

  73. C.O. Bozler et al., “Arrays of gated field emitter cones having 0.32 µm tip-to-tip spacings,” J. Vac. Sci. Tech., Vol. B 12, p. 626, 1994.

    Google Scholar 

  74. T. Utsumi, “Keynote address vacuum microelectronics: What’s new and exciting,” IEEE Transactions on Electron Devices, Vol. 38, No. 10, p. 2276, Oct. 1991.

    Article  Google Scholar 

  75. Y. Hori, et al., “Tower structure Si field emitter arrays with large emission current,” IEEE International Electron Device Meeting Technical Digest, p. 393, 1995.

    Google Scholar 

  76. W.D. Kesling et al., “Field emission display resolution,” SID’93 Digest, pp. 599–602, 1993.

    Google Scholar 

  77. W.D. Kesling et al., “Beam focusing for field-emission flat- panel displays,” IEEE Transactions on Electron Devices, Vol. 42, No. 2, p. 340, Feb. 1995.

    Article  Google Scholar 

  78. C.-M. Tang et al., “Theory and experiment of field-emitter arrays with planar lens focusing,” Eighth International Vacuum Microelectronics Conference, Portland Oregon, July 30-Aug. 3, 1995, p. 77.

    Google Scholar 

  79. Y. Toma, “Electron beam characteristics of double-gated Si field emitter arrays,” Eighth International Vacuum Microelectronics Conference, Portland Oregon, July 30-Aug. 3, 1995, p. 9.

    Google Scholar 

  80. J. Itoh, et al., “Fabrication of double-gated Si-field emitter arrays for focused electron beam generation,” J. Vac. Sci. Technol., Vol. B 13, No. 5, p. 1968, Sept./Oct. 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sarma, K.R., Akinwande, T. (1996). Flat Panel Displays for Portable Systems. In: Chandrakasan, A.P., Brodersen, R.W. (eds) Technologies for Wireless Computing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1453-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1453-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8633-2

  • Online ISBN: 978-1-4613-1453-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics