Skip to main content

Part of the book series: The Kluwer International Series in Engineering and Computer Science ((SECS,volume 373))

  • 321 Accesses

Abstract

A stochastic process (indexed with time) is a collection of random variables (Z(t)) t ɛℝ+ defined on some probability space (ΩA, IP) which takes values in some state space Z. The parameter t is interpreted as time, the state space Z will be either a finite or denumerable set or the euclidean space ℝd

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Asmussen S. (1987). Applied Probability and Queues. J. Wiley and Sons, New York.

    Google Scholar 

  2. Bratley P., Fox B.L., Schräge L.E. (1983). A guide to simulation. Springer Verlag, New York.

    Google Scholar 

  3. Burke P.J. (1966). The output of a queueing system. Operations Research 4, 699–704.

    Article  Google Scholar 

  4. Cao X.R. (1994). Realization Probabilities: The Dynamics of Queueing Networks. Springer Verlag, New York.

    Book  Google Scholar 

  5. Cogburn R. (1972). The central limit theorem for Markov processes. Proc. Sixth Berkeley Symposium (L. LeCam ed.). University of California Press, Volume 2, 485–4512.

    Google Scholar 

  6. Cohen J.W . (1982). The single server queue. Elsevier, New York.

    Google Scholar 

  7. Glynn, P.W., Iglehart, D.L. (1983). Simulation methods for queues: an overview. Queueing Systems 3, 221–256.

    Article  Google Scholar 

  8. Dobrushin R.L. (1956). Central limit theorems for nonstationary Markov Chains I. Theory of Probability and its Applications 1, 65–80 (English translation).

    Article  Google Scholar 

  9. Etemadi N. (1981). An elementary proof of the strong law of large numbers. Z. Wahrscheinlichkeitstheorie verw. Geb. 55 (1), 119–122.

    Article  Google Scholar 

  10. Ethier S.E., Kurtz T.G. (1986). Markov Processes: Characterization and Convergence. J. Wiley and Sons, New York.

    Google Scholar 

  11. Feller W. (1971). An introduction to probability theory and its applications (Second edition). J. Wiley and Sons, New York.

    Google Scholar 

  12. Föllmer H. (1988). Random Fields and Diffusion Processes. Ecole dété de probabilité de St.-Flour XV–XVII. Springer Lecture Notes 1362.

    Google Scholar 

  13. Freedman D. (1971). Markov Chains. Holden Day, San Francisco.

    Google Scholar 

  14. Gordon W.J., Newell G.F. (1967). Closed queueing systems with exponential servers. Operations Research 15, 254–265.

    Article  Google Scholar 

  15. Hordijk A., Iglehart D.L., Schassberger R. (1976). Discrete time methods for simulating continuous time Markov Chains. Adv. Appl. Probability 8, 772–788.

    Article  Google Scholar 

  16. Jackson J.R. (1957). Network of waiting lines. Operations Research 5, 518–521.

    Article  Google Scholar 

  17. Karlin S. (1966). A first course in stochastic processes. Academic Press, New York.

    Google Scholar 

  18. Kijima M. (1989). Upper Bounds of a Measure of Dependence and the Relaxation Time for Finite State Markov Chains. Journal of the Operations Research Society of Japan 32, 93–102.

    Google Scholar 

  19. Little J. (1961). A proof of the formula L = ⋋ • W. Operations Research 9, 383–387.

    Article  Google Scholar 

  20. Marshall, Olkin (1987). Inequalities: Theory of majorization and applications. Academic Press.

    Google Scholar 

  21. Nummelin E. (1978). A splitting technique for Harris recurrent Markov Chains. Z. Wahrscheinlichkeitstheorie verw. Gebiete 43, 309–318.

    Article  Google Scholar 

  22. Pflug, G. Ch., Schachermayer W. (1992). Coefficients of ergodicity for Order Preserving Markov Chains. J. Appl. Prob. 29 (1), 850–860.

    Article  Google Scholar 

  23. Puri P.S., Woolford S.W. (1981). On a generalized storage model with moment assumptions. J. Appl. Probab. 14, 473–481.

    Article  Google Scholar 

  24. Rachev S.T. (1984). The Monge-Kantorovich mass transportation problem and its stochastic applications. Theory of Probability and its Applications 29 (4), 647–676 (English translation).

    Article  Google Scholar 

  25. Rachev S.T. (1991). Probability Metrics and the Stability of Stochastic Models. Wiley and Sons, Chichester.

    Google Scholar 

  26. Revuz D. (1975). Markov Chains. North Holland, Amsterdam-Oxford.

    Google Scholar 

  27. Rosenblatt M. (1971). Markov Processes: Structure and asymptotic behavior. Springer, Berlin.

    Google Scholar 

  28. Ross S.M. (1980). Introduction to Probability Models. Academic Press, New York.

    Google Scholar 

  29. Schassberger R., Daduna H. (1983). The time for a round trip in a cycle of exponential queues. J. A CM 30 (1), 146–150.

    Google Scholar 

  30. Shedler G.S. (1987). Regeneration and Networks of Queues. Springer Verlag, New York, Berlin.

    Book  Google Scholar 

  31. Seneta E. (1981). Nonnegative matrices and Markov Chains. Springer Verlag, New York.

    Google Scholar 

  32. Stidham S. (1974). A last word on L = ⋋ • W. Operations Research 22, 417–421.

    Article  Google Scholar 

  33. [33] Walrand J. (1988). An introduction to queueing networks. Prentice Hall.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Pflug, G.C. (1996). Discrete—Event processes. In: Optimization of Stochastic Models. The Kluwer International Series in Engineering and Computer Science, vol 373. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1449-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1449-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8631-8

  • Online ISBN: 978-1-4613-1449-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics