Skip to main content

RF CMOS Design, Some Untold Pitfalls

  • Chapter
Analog Circuit Design

Abstract

Since several years research has been carried out on the design of RF circuits in CMOS technologies. Since then, the usability of CMOS for RF design has been demonstrated by several research groups. However, there are still some fundamental problems and limitations which may not be overlooked. The purpose of this work is to present some of those ‘untold pitfalls’ in the design of RF CMOS circuits for fully integrated transceivers for telecommunication applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Sevenhans, A. Vanwelsenaers, J. Wenin and J. Baro, “An integrated Si bipolar transceiver for a zero IF 900 MHz GSM digital mobile radio front-end of a hand portable phone,” Proc. CICC, pp.7.7.1–7.7.4, May 1991.

    Google Scholar 

  2. J. Crols and M. Steyaert, “A Single-Chip 900 MHz CMOS Receiver Front-End with a High Performance Low-IF Topology,” IEEE J. of Solid-State Circuits, vol.30, no.12, pp. 1483–1492, Dec. 1995.

    Article  Google Scholar 

  3. P.R. Gray and R.G. Meyer, “Future Directions in Silicon ICs for RF Personal Communications,” Proc. CICC, May 1995.

    Google Scholar 

  4. Bang-Sup Song, “CMOS RF Circuits for Data Communications Applications,” IEEE J. of Solid-State Circuits, vol. SC-21, no.2, pp.310–317, April 1986.

    Article  Google Scholar 

  5. P.Y. Chan, A. Rofougaran, K.A. Ahmed and A.A. Abidi, “A Highly Linear 1-GHz CMOS Downconversion Mixer,” Proc. ESSCIRC, pp.210–213, Sevilla, Sept. 1993.

    Google Scholar 

  6. J. Crols and M. Steyaert, “A 1.5 GHz Highly Linear CMOS Downconversion Mixer,” IEEE J. of Solid-State Circuits, vol. 30, no.7, pp.736–742, July 1995.

    Article  Google Scholar 

  7. J. Y.-C. Chang, A. A. Abidi and M. Gaitan, “Large Suspended Inductors on Silicon and Their Use in a 2-um CMOS RF Amplifier”, IEEE Electron Device Letters, vol. 14, no. 5, pp. 246–248, May 1993

    Article  Google Scholar 

  8. C.H. Hull, R.R. Chu and J.L. Tham, “A Direct-Conversion Receiver for 900 MHz (ISM Band) Spread-Spectrum Digital Cordless Telephone,” Proc. ISSCC, pp.344–345, San Francisco, Feb. 1996.

    Google Scholar 

  9. A.N. Karanicolas, “A 2.7 V 900 MHz CMOS LNA and Mixer,” Proc. ISSCC, pp.50–51, San Francisco, Feb. 1996.

    Google Scholar 

  10. A.A. Abidi, “Radio Frequency Integrated Circuits for Portable Communications,” Proc. CICC, pp. 151–158, San Diego, May 1994.

    Google Scholar 

  11. M. Steyaert and W. Sansen, “Opamp Design towards Maximum Gain-Bandwidth,” Proc. of the AACD workshop, pp.63–85, Delft, March 1993.

    Google Scholar 

  12. J. Crols, P. Kinget, J. Craninckx and M. Steyaert, “An Analytical Model of Planar Inductors on Lowly Doped Silicon Substrates for High Frequency Analog Design up to 3 GHz,” to be published in Proc. VLSI Circuits Symposium, June 1996.

    Google Scholar 

  13. D. Rabaey and J. Sevenhans, “The challenges for analog circuit design in Mobile Radio VLSI Chips,” Proc. of the AACD workshop, vol. 2, pp.225–236, Leuven, March 1993.

    Google Scholar 

  14. T. Stetzler, I. Post, J. Havens and M. Koyama, “A 2.7V to 4.5V Single-Chip GSM Transceiver RF Integrated Circuit,” Proc. ISSCC, pp. 150–151, San Francisco, Feb. 1995.

    Google Scholar 

  15. C. Marshall et al., “A 2.7V GSM Transceiver ICs with On-Chip Filtering,” Proc. ISSCC, pp. 148–149, San Francisco, Feb. 1995.

    Google Scholar 

  16. J. Sevenhans et al., “An Analog Radio front-end Chip Set for a 1.9 GHz Mobile Radio Telephone Application,” Proc. ISSCC, pp.44–45, San Francisco, Feb. 1994.

    Google Scholar 

  17. A. Rofougaran et al., “A 1GHz CMOS RF Front-End IC with Wide Dynamic Range,” Proc. ESSCIRC, pp.250–253, Lille, Sept. 1995.

    Google Scholar 

  18. D.H. Shen, C.-M. Hwang, B. Lusignan and B.A. Wooley, “A 900 MHz Integrated Discrete-Time Filtering RF Front-End,” Proc. ISSCC, pp.54–55, San Francisco, Feb. 1996.

    Google Scholar 

  19. S. Sheng et al., “A Low-Power CMOS Chipset for Spread Spectrum Communications,” Proc. ISSCC, pp.346–347, San Francisco, Feb. 1996.

    Google Scholar 

  20. A. A. Abidi, “High-frequency noise measurements on FETs with small dimensions,” IEEE Trans. Electron Devices, vol. 33, no. 11, pp. 1801–1805, Nov. 1986.

    Article  Google Scholar 

  21. B. Razavi, “Analysis, Modeling, and Simulation of Phase Noise in Monolithic Voltage-Controlled Oscillators”, Proc. CICC, pp. 323–326, May 1995.

    Google Scholar 

  22. J. Craninckx and M. Steyaert, “Low-Noise Voltage Controlled Oscillators Using Enhanced LC-tanks”, IEEE Trans, on Circuits and Systems - II: Analog and Digital Signal Processing, vol. 42, no. 12, pp. 794–804, Dec. 1995.

    Article  Google Scholar 

  23. A. Rofourgan, J. Rael, M. Rofourgan, A. Abidi, “A 900-MHz CMOS LC-Oscillator with Quadrature Outputs”, Proc. ISSCC, pp. 392–393, Febr. 1996.

    Google Scholar 

  24. N. M. Nguyen and R. G. Meyer, “A 1.8-GHz Monoithic LC Voltage-Controlled Oscillator”, IEEE Journal of Solid-State Circuits, vol. 27, no. 3, pp. 444–450, March 1992.

    Article  Google Scholar 

  25. J. Craninckx and M. Steyaert, “A 1.8-GHz Low-Phase-Noise Voltage-Controlled Oscillator with Prescaler”, IEEE Journal of Solid-State Circuits, vol. 30, no. 12, pp. 1474–1482, Dec. 1995.

    Article  Google Scholar 

  26. J. Craninckx and M. Steyaert, “A 1.75-GHz/3-V Dual Modulus Divide-by-128/129 Prescaler in 0.7-um CMOS”, Proc. ESSCIRC, pp. 254–257, Sept. 1995.

    Google Scholar 

  27. P. Kinget and M. Steyaert, “A 1 GHz CMOS Upconversion Mixer”, to be published in Proc. CICC, session 10.4, May 1996.

    Google Scholar 

  28. “AD 7886, a 12-Bit, 750 kHz, Sampling ADC,” Analog Devices data sheet, Apr. 1991.

    Google Scholar 

  29. J. Craninckx and M. Steyaert, “A 1.8-GHz Low-Phase-Noise Spiral-LC CMOS VCO,” to be published in Proc. VLSI Circuits Symposium, June 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Steyaert, M., Borremans, M., Craninckx, J., Crols, J., Janssens, J., Kinget, P. (2001). RF CMOS Design, Some Untold Pitfalls. In: Sansen, W., van de Plassche, R.J., Huijsing, J.H. (eds) Analog Circuit Design. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1443-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1443-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8628-8

  • Online ISBN: 978-1-4613-1443-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics