Skip to main content

The Handling of Fuzzy Objective Functions in (Multicriteria) Linear Programs

  • Chapter
Fuzzy Logic Foundations and Industrial Applications

Part of the book series: International Series in Intelligent Technologies ((ISIT,volume 8))

  • 245 Accesses

Abstract

For calculating a solution of a linear program where coefficients of the objective function(s) may be fuzzy, we have to explain how the maximization of a fuzzy objective can be interpreted. In the literature of fuzzy optimization, a lot of procedures for substituting fuzzy objectives by crisp ones are proposed. In this paper, a critical survey of these different methods is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buckley J.J. (1988). “Possibilistic linear programming with triangular fuzzy numbers,” Fuzzy Sets and Systems 26, 135–138.

    Article  MathSciNet  Google Scholar 

  2. Buckley J.J. (1989). “Solving possibilistic linear programming problems,” Fuzzy Sets and Systems 31, 329–341.

    Article  MathSciNet  MATH  Google Scholar 

  3. Buckley J.J. (1995). “Joint solution to fuzzy programming problems,” Fuzzy Sets and Systems 72, 215–220.

    Article  MathSciNet  MATH  Google Scholar 

  4. Carlsson C. and Korhonen P. (1986), “A parametric approach to fuzzy linear programming,” Fuzzy Sets and Systems 20, 17–30.

    Article  MathSciNet  MATH  Google Scholar 

  5. Chanas S. (1983). “The use of parametric programming in FLP,” Fuzzy Sets and Systems 11, 243–251.

    Article  MATH  Google Scholar 

  6. Chanas S. (1989). “Fuzzy programming in multiobjective linear programming—a parametric approach,” Fuzzy Sets and Systems 29, 303–313.

    Article  MathSciNet  MATH  Google Scholar 

  7. Chanas S. and Kuchta D. (1994). “Linear programming problems with fuzzy coefficients in the objective function,” in: Delgado M.; Kacprzyk J., Verdegay J. L. and Vila M. A., Fuzzy Optimization, Physica-Verlag, Heidelberg, 148–157.

    Google Scholar 

  8. Campos L. and Verdegay J.L. (1989). “Linear programming problems and ranking of fuzzy numbers,” Fuzzy Sets and Systems 32, 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  9. Delgado M., Verdegay J.L. and Vila M. A. (1989). “A general model for fuzzy linear programming,” Fuzzy Sets and Systems 29, 21–30.

    Article  MathSciNet  MATH  Google Scholar 

  10. Delgado M., Verdegay J. L. and Vila M. A. (1994). “Fuzzy linear programming: From classical methods to new applications,” in: Delgado M., Kacprzyk J., Verdegay J.L. and Vila M. A. (Eds.), Fuzzy Optimization, Physica-Verlag, Heidelberg, 111–134.

    Google Scholar 

  11. Kacprzyk J. and Orlovski S.A. (Eds.) (1987). Optimization models using fuzzy sets and possibility theory, Reidel Dordrecht.

    MATH  Google Scholar 

  12. Lai Y.-J. and Hwang C.-L. (1992a). “Interactive fuzzy linear programming,” Fuzzy Sets and Systems 45, 169–183.

    Article  MathSciNet  MATH  Google Scholar 

  13. Lai Y.-J. and Hwang C.-L. (1992b). Fuzzy mathematical programming. Methods and applications, Springer Verlag, Heidelberg.

    MATH  Google Scholar 

  14. Lai Y.-J. and Hwang C.-L. (1994). Fuzzy multiple objective decision making: Methods and applications, Springer Verlag, Heidelberg.

    Book  MATH  Google Scholar 

  15. Luhandjula M. K. (1987). “Multiple objective programming with possibilistic coefficients,” Fuzzy Sets and Systems 21, 135–146.

    Article  MathSciNet  MATH  Google Scholar 

  16. Negoita C.V., Minoiu S. and Stan E. (1976). “On considering imprecision in dynamic linear programming,” Economic Computation and Economic Cybernetics Studies and Research 3, 83–95.

    MathSciNet  Google Scholar 

  17. Orlovski S.A. (1985). “Mathematical programming problems with fuzzy parameters,” in: Kacprzyk J. and Yager R. R. (Eds.), Management decision support systems using fuzzy sets and possibility theory, TÜV Rheinland, Köln, 1985, 136–145.

    Google Scholar 

  18. Ramik J. and Rommelfanger H. (1993). “A single- and a multi-valued order on fuzzy numbers and its use in linear programming with fuzzy coefficients,” Fuzzy Sets and Systems 57, 203–208.

    Article  MathSciNet  MATH  Google Scholar 

  19. Rommelfanger H. (1988). Fuzzy decision support systems—Decisions in fuzzy environment (in German), Springer Verlag, Berlin, Heidelberg, second edition, 1994.

    Google Scholar 

  20. Rommelfanger H. (1989). “Inequality relations in fuzzy constraints and its use in linear fuzzy optimization,” in: Verdegay J. L. and Delgado M. (Eds.), The interface between artificial intelligence and operational research in fuzzy environment, Verlag TÜV Rheinland, Köln, 195–211.

    Google Scholar 

  21. Rommelfanger H. (1990). “FULPAL—An interactive method for solving multiobjective fuzzy linear programming problems,” in: Slowinski R. and Teghem J. (Eds.), Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty, Kluwer Academic Publishers, Dordrecht, 279–299.

    Chapter  Google Scholar 

  22. Rommelfanger H. (1991). “FULP—A PC-supported procedure for solving multicriteria linear programming problems with fuzzy data”, in: Fedrizzi M., Kacprzyk J. and Rubens M. (Eds.), Interactive fuzzy optimization, Springer Verlag, Berlin, Heidelberg, 154–167.

    Google Scholar 

  23. Rommelfanger H. (1994). “Some problems of fuzzy optimization with t-norm based addition,” in: Delgado M., Kacprzyk J., Verdegay J. L. and Vila M.A., Fuzzy optimization. Recent advances, Physica-Verlag, Heidelberg, 158–168.

    Google Scholar 

  24. Rommelfanger H. (1995). “FULPAL 2.0—An interactive algorithm for solving multicriteria fuzzy linear programs controlled by aspiration levels,” in: Schweigert D. (Ed.), Methods of multicriteria decision theory, Pfalzakademie, Lamprecht, 21–34.

    Google Scholar 

  25. Rommelfanger H., Hanuscheck R. and Wolf J. (1989). “Linear programming with fuzzy objectives,” Fuzzy Sets and Systems 29, 31–48.

    Article  MathSciNet  MATH  Google Scholar 

  26. Rommelfanger H. and Keresztfalvi T. (1991). “Multicriteria fuzzy optimization based on yager’s parametrized t-norm,” Foundations of Computing and Decision Sciences 16, 99–110.

    MathSciNet  MATH  Google Scholar 

  27. Sakawa M. (1983). “Interactive computer programs for fuzzy linear programming with multiple objectives,” Int. J. Man-Machine Studies 18, 489–503.

    Article  MATH  Google Scholar 

  28. Sakawa M. (1993). Fuzzy sets and interactive multiobjective optimization, Plenum Press, New York.

    MATH  Google Scholar 

  29. Sakawa M. and Yano H. (1989). “Interactive fuzzy satisficing method for multiobjective nonlinear programming problems with fuzzy parameters,” Fuzzy Sets and Systems 30, 221–238.

    Article  MathSciNet  MATH  Google Scholar 

  30. Sakawa M. and Yano H. (1990). “Interactive decision making for multiobjective programming problems with fuzzy parameters,” in: Slowinski R. and Teghem J. (Eds.), Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty, Kluwer Academic Publishers, Dordrecht, 191–228.

    Chapter  Google Scholar 

  31. Slowinski R. (1986). “A multicriteria fuzzy linear programming method for water supply system development planning,” Fuzzy Sets and Systems 19, 217–237.

    Article  MathSciNet  MATH  Google Scholar 

  32. Slowinski R. (1990). “‘FLIP’: an interactive method for multiobjective linear programming with fuzzy coefficients,” in: Slowinski R. and Teghem J. (Eds.), Stochastic versus fuzzy approaches to multiobjective mathematical programming under uncertainty, Kluwer Academic Publishers, Dordrecht, 249–262.

    Chapter  Google Scholar 

  33. Tanaka H. and Asai K. (1984). Fuzzy linear programming with fuzzy numbers, Fuzzy Sets and Systems 13, 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  34. Tanaka H., Ichihashi H. and Asai K. (1984). A formulation of linear programming problems based on comparison of fuzzy numbers, Control and Cybernetics 13, 185–194.

    MathSciNet  MATH  Google Scholar 

  35. Verdegay J.L. (1982). “Fuzzy mathematical programming,” in: Gupta M. M. and Sanchez E. (Eds.), Approximate reasoning in decision analysis, North-Holland, Amsterdam, 231–236.

    Google Scholar 

  36. Zimmermann H.-J. (1978). “Fuzzy programming and linear programming with several objective functions,” Fuzzy Sets and Systems 1, 45–55.

    Article  MathSciNet  MATH  Google Scholar 

  37. Zimmermann H.-J. (1987). Fuzzy sets, decision making and expert systems, Kluwer Academic Publishers, Boston.

    Book  Google Scholar 

  38. Zimmermann H.-J. and Zysno P. (1979). “Latent connectives in human decision making,” Fuzzy Sets and Systems 3, 37–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rommelfanger, H.J. (1996). The Handling of Fuzzy Objective Functions in (Multicriteria) Linear Programs. In: Ruan, D. (eds) Fuzzy Logic Foundations and Industrial Applications. International Series in Intelligent Technologies, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1441-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1441-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8627-1

  • Online ISBN: 978-1-4613-1441-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics