Skip to main content

Seafloor Map Generation for Autonomous Underwater Vehicle Navigation

  • Chapter
Underwater Robots
  • 218 Accesses

Abstract

Elevation map generation is an essential component of any autonomous underwater vehicle designed to navigate close to the seafloor because elevation maps are used for obstacle avoidance, path planning and self localization. We present an algorithm for the reconstruction of elevation maps of the seafloor from side-scan sonar backscatter images and sparse bathymetrie points co-registered within the image. Given the trajectory for the underwater vehicle, the reconstruction is corrected for the attitude of the side-scan sonar during the image generation process. To perform reconstruction, an arbitrary but computable scattering model is assumed for the seafloor backscatter. The algorithm uses the sparse bathymetrie data to generate an initial estimate for the elevation map which is then iteratively refined to fit the backscatter image by minimizing a global error functional. Concurrently, the parameters of the scattering model are determined on a coarse grid in the image by fitting the assumed scattering model to the backscatter data. The reconstruction is corrected for the movement of the sensor by initially doing local reconstructions in sensor coordinates and then transforming the local reconstructions to a global coordinate system using vehicle attitude and performing the reconstruction again. We demonstrate the effectiveness of our algorithm on synthetic and real data sets. Our algorithm is shown to decrease the average elevation error when compared to real bathymetry from 4.6 meters for the initial surface estimate to 1.6 meters for the final surface estimate from a survey taken of the Juan de Fuca Ridge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aleksandrov, A.D., Kolmogorov, A.N., and Lavrent’ev, M.A. 1964. Mathematics: Its Content, Methods and Meaning, MIT Press: Cambridge, MA.

    Google Scholar 

  • Baeck, T. and Schwefel, H.P. 1993. An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation, 1(1):1–10.

    Article  Google Scholar 

  • Blake, A. and Zisserman, A. 1987. Visual Reconstruction, MIT Press: Cambridge, MA.

    Google Scholar 

  • Caruthers, J.W. and Novarini, J.C. 1993. Modeling bistatic bottom scattering strength including a forward scatter lobe. IEEE J. Oceanic Engineering, 18(2):100–107.

    Article  Google Scholar 

  • Cervenka, P. and de Moustier, C. 1993. Sidescan sonar image processing techniques. IEEE J. Oceanic Engineering, 18(2):108–122.

    Article  Google Scholar 

  • Clarke, J.H. 1994. Toward remote seafloor classification using the angular response of acoustic backscatter: A case study from multiple overlapping GLORIA data. IEEE J. Oceanic Engineering, 19(1):112–127.

    Article  Google Scholar 

  • Cobra, D.T., Oppenheim, A.V., and Jaffe, J.S. 1992. Geometric distortions in side-scan sonar images: A procedure for their estimation and correction. IEEE J. Oceanic Engineering, 17(3):252–268.

    Article  Google Scholar 

  • Cuschieri, J.M. and Hebert, M. 1990. Three-dimensional map generation from side-scan sonar images. L. Energy Resources Technology, 112:96–102.

    Article  Google Scholar 

  • Denbigh, P.N. 1989. Swath bathymetry: Principles of operation and analysis of errors. IEEE J. Oceanic Engineering, 14(4):289–298.

    Article  Google Scholar 

  • de Moustier, C. and Alexandrou, D. 1991. Angular dependence of 12-kHz seafloor acoustic backscatter. J. Acoustical Society of America, 90:522–531.

    Article  Google Scholar 

  • Elfes, A. 1987. Sonar-based real world mapping and navigation. IEEE J. Robotics and Automation, RA-3(3):249–265.

    Article  Google Scholar 

  • Gensane, M. 1989. A statistical study of acoustic signals backscat-tered from the sea bottom. IEEE J. Oceanic Engineering, 14(l):84–93.

    Article  Google Scholar 

  • Hebert, M. 1989. Terrain modeling for autonomous underwater navigation. In Proc. Unmanned Untethered Submersible Technology Conf., pp. 502–511.

    Chapter  Google Scholar 

  • Horn, B.K.P. 1986. Robot Vision. MIT Press: Cambridge, MA.

    Google Scholar 

  • Horn, B.K.P. and Brooks, M.J. 1988. The variational approach to shape from shading. Computer Vision, Graphics and Image Processing, 33(2):174–208.

    Article  Google Scholar 

  • Jackson, D.R., Winebrenner, D.P., and Ishimaru, A. 1986. Application of the composite roughness model to high-frequency bottom backscattering. J. Acoustical Society of America, 79:1410–1422.

    Article  Google Scholar 

  • Johnson, A.E. 1993. Incorporating different reflection models into surface reconstruction. In Proc. Unmanned Untethered Submersible Technology Conf., pp. 446–459.

    Google Scholar 

  • Langer, D. and Hebert, M. 1991. Building qualitative elevation maps from underwater sonar data for autonomous underwater navigation. In Proc. IEEE Int. Conf. Robotics and Automation, pp. 2478–2483.

    Chapter  Google Scholar 

  • Leonard, J.J. and Durrant-Whyte, H.F. 1992. Directed Sonar Sensing for Mobile Robot Navigation, Kluwer Academic: Norwell, MA.

    MATH  Google Scholar 

  • Malik, S. 1991. Quantitative seafloor backscatter characterization using an interferometric sidescan sonar. Master’s Thesis, U. Virginia.

    Google Scholar 

  • Matsumoto, H., Dziak, R.P., and Fox, C.G. 1993. Estimation of seafloor microtopographic roughness through modeling of acoustic backscatter data recorded by multibeam sonar systems. J. Acoustical Society of America, 94:2776–2787.

    Article  Google Scholar 

  • Mazel, C. 1985. Side Scan Sonar Record Interpretation, Klein Associates: Salem, NH.

    Google Scholar 

  • Michalopoulou, Z., Alexandrou, D., and de Moustier, C. 1994. Application of a maximum likelihood processor to acoustic backscatter for the estimation of seafloor roughness parameters. J. Acoustical Society of America, 95:2467–2477.

    Article  Google Scholar 

  • Mitchell, N.C. and Somers, M.L. 1989. Quantitative backscatter measurements with a long-range side-scan sonar. IEEE J. Oceanic Engineering, 14(4):368–374.

    Article  Google Scholar 

  • Mourad, P.D. and Jackson, D.R. High frequency sonar equation models for bottom backscatter and forward loss. In Proc. IEEE Oceans 89 Conf., pp. 1163–1175.

    Google Scholar 

  • Oren, M. and Nayar, S.K. 1992. Diffuse scattering model for rough surfaces. Dept. of Computer Science Technical Report 057-92, Columbia University, New York, NY.

    Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. 1988. Numerical Recipes in C, Cambridge University Press: New York, NY.

    MATH  Google Scholar 

  • Rigaud, V. and Marcé, L. 1990. Absolute location of underwater robotic vehicles by acoustic data fusion. In Proc. IEEE Int. Conf. Robotics and Automation, pp. 1310–1315.

    Chapter  Google Scholar 

  • Stanton, T.K. 1984. Sonar estimates of seafloor microroughness. J. Acoustical Society of America, 74:809–818.

    Article  Google Scholar 

  • Stewart, W.K., Marra, M., and Jiang, M. 1992. A hierarchical approach to seafloor classification using neural networks. IEEE Oceans 92 Conf., pp. 109–113.

    Google Scholar 

  • Stewart, W.K. 1989. Three-dimensional modeling of seafloor backscatter from sidescan sonar for autonomous classification and navigation. In Proc. Unmanned Untethered Submersible Technology Conf., pp. 372–392.

    Chapter  Google Scholar 

  • Stewart, W.K., Chu, D., Malik, S., Lerner, S., and Singh, H. 1994. Quantitative seafloor characterization using a bathymetrie sides-can sonar. IEEE J. Oceanic Engineering, 19(4):599–610.

    Article  Google Scholar 

  • Torrance, K.E. and Sparrow, E.M. Theory for off-specular scattering from roughened surfaces, J. Optical Society of America, 57:1105–1114.

    Google Scholar 

  • Urick, R.J. 1983. Principles of Underwater Sound, McGraw-Hill: New York, NY.

    Google Scholar 

  • von Alt, C. 1989. A 200 kHz deep sea interferometric side scan sonar system. In Proc. IEEE Oceans 89 Conf., pp. 1136–1141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Johnson, A.E., Hebert, M. (1996). Seafloor Map Generation for Autonomous Underwater Vehicle Navigation. In: Yuh, J., Ura, T., Bekey, G.A. (eds) Underwater Robots. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1419-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1419-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8616-5

  • Online ISBN: 978-1-4613-1419-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics