Origin and Evolution of Viroids and Viroid-like Satellite RNAs

  • Theodor O. Diener

Abstract

Viroids, the smallest and simplest agents of infectious disease, cause a number of economically important diseases of crop plants. Present evidence indicates that most of these diseases originated recently (in the 20th century) by chance transfer of viroids from endemically infected wild plants or by use of viroid-infected germplasm during plant breeding. Modern agricultural practices, such as widespread monoculture of genetically identical plants, and worldwide distribution of planting material, has made it possible for the pathogens to maintain themselves in the crop plants and to conquer new territories. Phylogenetic analysis of their nucleotide sequences indicates that viroids and satellite RNAs represent a monophyletic group, with all but the two self-cleaving viroids forming one cluster and the satellite RNAs another. The two self-cleaving viroids are phylogenetically distant from either cluster; they may represent ancestral forms. Results from site-directed mutagenesis experiments indicate that, upon exposure to selective pressures, viroids can evolve extremely rapidly, with another, fitter, component of the quasi-species often becoming dominant within days or weeks. This extreme plasticity of their nucleotide sequences establishes viroids as the most rapidly evolving biological system known.

Key words

viroid diseases phylogeny disease ecology epidemiology quasispecies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Diener T.O., Virology 45, 411–428, 1971.PubMedCrossRefGoogle Scholar
  2. 2.
    Riesner D., Semin Virol 1, 83–99, 1990.Google Scholar
  3. 3.
    Diener T.O., FASEB J 5, 2808–2813, 1991.PubMedGoogle Scholar
  4. 4.
    Zaitlin M., Niblett C.L., Dickson E., and Goldberg R.B., Virology 101, 1–9, 1980.CrossRefGoogle Scholar
  5. 5.
    Branch A.D. and Dickson E., Virology 104, 10–26, 1980.PubMedCrossRefGoogle Scholar
  6. 6.
    Hadidi A., Cress D.E., and Diener T.O., Proc Natl Acad Sci USA 78, 6932–6935, 1981.PubMedCrossRefGoogle Scholar
  7. 7.
    Schindler I.-M. and Mühlbach H.-P., Plant Sci 84, 221–229, 1992.CrossRefGoogle Scholar
  8. 8.
    Branch A.D. and Robertson H.D., Science 223, 450–455, 1984.PubMedCrossRefGoogle Scholar
  9. 9.
    Owens R.A. and Diener T.O., Proc Natl Acad Sci USA 79, 113–117, 1982.PubMedCrossRefGoogle Scholar
  10. 10.
    Diener T.O., Owens R.A., and Hammond R.W., Intervirology 35, 186–195, 1993.PubMedGoogle Scholar
  11. 11.
    Diener T.O. Viroids and Viroid Diseases, Wiley and Sons, New York, 1979, pp. 1–252.Google Scholar
  12. 12.
    Keller J.R. Investigations on Chrysanthemum Stunt Virus and Chrysanthemum Virus Q. Cornell University, Agr Exp Sta Mem 324, Ithaca, NY 1953, pp. 1–40.Google Scholar
  13. 13.
    Belalcazar S.C. and Galindo J.A., Agrociencia 18, 79–88, 1974.Google Scholar
  14. 14.
    Galindo J.A., Smith D.R., and Diener T.O., Phytopathology 72, 49–54, 1982.CrossRefGoogle Scholar
  15. 15.
    Orozco Vargas G. Thesis: Aspectos Ecologicos des Viroide “Planta Macho del Jitomate.” Thesis, Colegio de Postgraduados, Chapingo, Mexico, Mexico 1983, pp. 1–58.Google Scholar
  16. 16.
    Fernow K.H., Peterson L.C., and Plaisted R.L., Am Potato J 47, 75–80, 1970.CrossRefGoogle Scholar
  17. 17.
    Singh R.P., Am Potato J 47, 225–227, 1970.CrossRefGoogle Scholar
  18. 18.
    Galindo J.A., Martinez-Soriano J.P., Yucel I., Maroon C.J.M., and Diener T.O., Abstracts, Annual Meeting, Am. Phytopath. Soc. 1995, Abstr. No. 222, 1995.Google Scholar
  19. 19.
    Elena S.F., Dopazo J., Flores R., Diener T.O., and Moya A., Proc Natl Acad Sci USA 88, 5631–5634, 1991.PubMedCrossRefGoogle Scholar
  20. 20.
    Hammond R.W., Smith D.R., and Diener T.O., Nucleic Acids Res 17, 10083–10094, 1989.PubMedCrossRefGoogle Scholar
  21. 21.
    Keese P., Visvader J.E., and Symons R.H. in Domingo E., Holland J., and Ahlquist P. (eds). RNA Genetics. Volume 3. CRC Press, Boca Raton, FL, 1988, pp. 71–98.Google Scholar
  22. 22.
    Hammond R.W. and Owens R.A. in Wilson T.M.A. and Davies J.W. (eds). Genetic Engineering with Plant Viruses. CRC Press, Boca Raton, FL, 1992, pp. 297–322.Google Scholar
  23. 23.
    Cress D.E., Kiefer M.C., and Owens R.A., Nucleic Acids Res 11, 6821–6835, 1983.PubMedCrossRefGoogle Scholar
  24. 24.
    Owens R.A., Hammond R.W., Gardner R.C., Kiefer M.C., Thompson S.M., and Cress D.E., Plant Mol Biol 6, 179–192, 1986.CrossRefGoogle Scholar
  25. 25.
    Gardner R.C., Chonoles K.R., and Owens R.A., Plant Mol Biol 6, 221–228, 1986.CrossRefGoogle Scholar
  26. 26.
    Owens R.A., Thompson S.M., and Steger G., Virology 185, 18–31, 1991.PubMedCrossRefGoogle Scholar
  27. 27.
    Loss P., Schmitz M., Steger G., and Riesner D., EMBO J 10, 719–727, 1991.PubMedGoogle Scholar
  28. 28.
    Qu F., Heinrich C., Loss P., Steger G., Tien P., and Riesner D., EMBO J 12, 2129–2139, 1993.PubMedGoogle Scholar
  29. 29.
    Owens R.A., Chen W., Hu Y., and Hsu Y.H., Virology 208, 554–564, 1995.PubMedCrossRefGoogle Scholar
  30. 30.
    Matthews R.E.F., Plant Virology, Academic Press, New York, 1991, pp. 1–835.Google Scholar
  31. 31.
    Kiefer M.C., Owens R.A., and Diener T.O., Proc Natl Acad Sci USA 80, 6234–6238, 1983.PubMedCrossRefGoogle Scholar
  32. 32.
    Kleckner N., Annu Rev Genet 15, 341–404, 1981.PubMedCrossRefGoogle Scholar
  33. 33.
    Temin H.M., Cell 21, 599–600, 1980.PubMedCrossRefGoogle Scholar
  34. 34.
    Lambcwitz A.M. and Belfort M., Annu Rev Biochem 62, 587–622, 1993.CrossRefGoogle Scholar
  35. 35.
    Nargang F.E., Bell J.B., Stohl L.L., and Lambowitz A.M., Cell 38, 441–453, 1984.PubMedCrossRefGoogle Scholar
  36. 36.
    Lambowitz A.M., Cell 56, 323–326, 1989.PubMedCrossRefGoogle Scholar
  37. 37.
    Diener T.O., Proc Natl Acad Sci USA 78, 5014–5015, 1981.PubMedCrossRefGoogle Scholar
  38. 38.
    Saville B.J. and Collins R.A., Cell 61, 685–696, 1990.PubMedCrossRefGoogle Scholar
  39. 39.
    Saville B.J. and Collins R.A., Proc Natl Acad Sci USA 88, 8826–8830, 1991.PubMedCrossRefGoogle Scholar
  40. 40.
    Roberts R.J., Nature 274, 530, 1978.PubMedCrossRefGoogle Scholar
  41. 41.
    Crick F.H.C., Science 204, 264–271, 1979.PubMedCrossRefGoogle Scholar
  42. 42.
    Kruger K., Grabowski P.J., Zaug A.J., Sands J., Gottschling D.E., and Cech T.R., Cell 31, 147–157, 1982.PubMedCrossRefGoogle Scholar
  43. 43.
    Guerrier-Takada C., Gardiner K., Marsh T., Pace N., and Altman S., Cell 35, 849–857, 1983.PubMedCrossRefGoogle Scholar
  44. 44.
    Dinter-Gottlieb G., Proc Natl Acad Sci USA 83, 6250–6254, 1986.PubMedCrossRefGoogle Scholar
  45. 45.
    Symons R.H., Mol Plant-Microbe Interact 4, 111–121, 1991.PubMedCrossRefGoogle Scholar
  46. 46.
    Diener T.O., Proc Natl Acad Sci USA 86, 9370–9374, 1989.PubMedCrossRefGoogle Scholar
  47. 47.
    Hernández C. and Flores R., Proc Natl Acad Sci USA 89, 3711–3715, 1992.PubMedCrossRefGoogle Scholar
  48. 48.
    Symons R.H., Semin Virol 1, 117–126, 1990.Google Scholar
  49. 49.
    Buzayan J.M., Gerlach W.L., and Bruening G., Proc Natl Acad Sci USA 83, 8859–8862, 1986.PubMedCrossRefGoogle Scholar
  50. 50.
    Forster A.C., Jeffries A.C., Sheldon C.C., and Symons R.H., Cold Spring Harb Symp Quantit Biol 52, 249–259, 1987.Google Scholar
  51. 51.
    Sharp P.A., Cell 42, 397–400, 1985.PubMedCrossRefGoogle Scholar
  52. 52.
    Cech T.R., Proc Natl Acad Sci USA 83, 4360–4363, 1986.PubMedCrossRefGoogle Scholar
  53. 53.
    Sano T., Oshima K., Hataya T., Uyeda I., Shikata E., Chou T.G., Meshi T., and Okada Y., J Gen Virol 67, 1673–1678, 1986.CrossRefGoogle Scholar
  54. 54.
    Tsagris M., Tabler M., and Sänger H.L., Nucleic Acids Res 19, 1605–1612, 1991.PubMedCrossRefGoogle Scholar
  55. 55.
    Steger G., Tabler M., Brüggemann W., Colpan M., Klotz G., Sänger H.L., and Riesner D., Nucleic Acids Res 15, 9613–9630, 1986.CrossRefGoogle Scholar
  56. 56.
    Holland J., Spindler K., Horodyski F., Grabau E., Nichol S., and Vande Pol S., Science 215, 1577–1585, 1982.PubMedCrossRefGoogle Scholar
  57. 57.
    Domingo E., Flavell R., and Weissmann C., Gene 1, 3, 1976.PubMedCrossRefGoogle Scholar
  58. 58.
    Domingo E., Sabo D., Taniguchi T., and Weissmann C., Cell 13, 735, 1978.PubMedCrossRefGoogle Scholar
  59. 59.
    Duarte E.A., Novella I.S., Weaver S.C., Domingo E., Wain-Hobson S., Clarke D.K., Moya A., Elena S.F., de la Torre J.C., and Holland J.J., Infect Agents Dis 3, 201–214, 1994.PubMedGoogle Scholar
  60. 60.
    Eigen M. and Biebricher CK. in Domingo E., Holland J.J., and Ahlquist P. (eds). RNA Genetics, Volume 3: Variability of RNA Genomes. CRC Press, Boca Raton, FL, 1988, pp. 211–245.Google Scholar
  61. 61.
    Eigen M., Sci Am July, 42–49, 1993.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Theodor O. Diener
    • 1
    • 2
  1. 1.Center for Agricultural BiotechnologyUniversity of Maryland Biotechnology InstituteCollege ParkUSA
  2. 2.Department of Plant BiologyUniversity of MarylandCollege ParkUSA

Personalised recommendations