Advertisement

Molecular Simulation of Pure Fluid and Binary Mixture Adsorption in Buckytubes and MCM-41

  • M. W. Maddox
  • K. E. Gubbins
Part of the The Kluwer International Series in Engineering and Computer Science book series (SECS, volume 356)

Abstract

Grand canonical Monte Carlo (GCMC) molecular simulation is used to study the adsorption of argon in model buckytubes and an equimolar argon/nitrogen mixture in a model MCM-41 pore. The critical buckytube pore diameter above which argon exhibits first-order condensation at 77 K is determined to be between 1.5 nm and 2.0 nm. At pressures below 0.0002 atm, nitrogen is selectively adsorbed into a 1.9 nm diameter MCM-41 pore at 77 K. At higher pressures an interesting reversal of selectivity is demonstrated and argon is preferentially adsorbed.

Keywords

Adsorption Isotherm Pore Wall Capillary Condensation Desorption Branch Pure Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Iijima, Nature, 354, 56–58 (1991).CrossRefGoogle Scholar
  2. 2.
    S. Iijima and T. Ichihashi, Nature, 363, 603–605 (1993).CrossRefGoogle Scholar
  3. 3.
    D. S. Bethune, C. H. Kiang, M. S. deVries, G. Gorman, R. Savoy, J. Vasquez, and R. Beyers, Nature, 363, 605–607 (1993).CrossRefGoogle Scholar
  4. 4.
    T. W. Ebbesen, P. M. Ajayan, H. Hiuri, and K. Tanigaki, Nature, 367, 519 (1994).CrossRefGoogle Scholar
  5. 5.
    P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, Science, 265, 1212–1214 (1994).CrossRefGoogle Scholar
  6. 6.
    M. W. Maddox, D. Ulberg, and K. E. Gubbins, Fluid Phase Equilibria, 104, 145–158 (1995).CrossRefGoogle Scholar
  7. 7.
    M. W. Maddox and K. E. Gubbins, Int. J. Thermophysics, 15, 1115–1123 (1994).CrossRefGoogle Scholar
  8. 8.
    M. W. Maddox and K. E. Gubbins, Langmuir, in press (1995).Google Scholar
  9. 9.
    J. S. Beck, J.C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenker, J. Am. Chem. Soc., 114, 10834–10843 (1992).CrossRefGoogle Scholar
  10. 10.
    C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Nature, 359, 710–712 (1992).CrossRefGoogle Scholar
  11. 11.
    S. Jiang, K. E. Gubbins, and P. B. Balbuena, J. Phys. Chem., 98, 2403, (1994).CrossRefGoogle Scholar
  12. 12.
    S. L. Sowers and K. E. Gubbins, submitted to Langmuir (1995).Google Scholar
  13. 13.
    M. W. Maddox, S. L. Sowers, and K. E. Gubbins, Adsorption, in press (1995).Google Scholar
  14. 14.
    G. B. Woods and J. S. Rowlinson, J. Chem. Soc. Faraday Trans. II, 85, 756 (1989).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • M. W. Maddox
    • 1
  • K. E. Gubbins
    • 1
  1. 1.School of Chemical EngineeringCornell UniversityIthacaUSA

Personalised recommendations