Thermodynamically Consistent Analysis of Silica Surface Heterogeneity Using Alkane and Alkene Adsorption Isotherms

  • Jacek Jagiello
  • Teresa J. Bandosz
  • Karol Putyera
  • James A. Schwarz
Part of the The Kluwer International Series in Engineering and Computer Science book series (SECS, volume 356)


Adsorption isotherms for butane and butene, measured on silica samples at different temperatures, are used as a data base for describing these gas-solid adsorption systems. Data are analyzed using non-parametric regression and the stable numerical method for solving the adsorption integral equation. The adsorption energy scale of the calculated distributions is assessed on the basis of its consistency with the isosteric heats of adsorption. The effect of lateral interactions between adsorbed molecules on the results obtained is discussed. The adsorption properties of the initial and heat treated silica samples are discussed in terms of their butane and butene adsorption energy distributions.


Adsorption Isotherm Adsorption Energy Adsorbed Molecule Lateral Interaction Isosteric Heat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Jaroniec, R. Madey, Physical Adsorption on Heterogeneous Solids, Elsevier, Amsterdam, 1988.Google Scholar
  2. 2.
    W. Rudzinski, D. H. Everett, Adsorption of Gases on Heterogeneous Surfaces, Academic Press, London, 1991.Google Scholar
  3. 3.
    A. N. Tikhonov, Dokl. Akad. Nauk USSR, 39, 195 (1943).Google Scholar
  4. 4.
    J. Jagiełło, Langmuir 10, 2778 (1994).CrossRefGoogle Scholar
  5. 5.
    L. Czepirski, J. Jagiełło, Chem. Eng. Sci. 44, 797 (1989).CrossRefGoogle Scholar
  6. 6.
    J. Jagiełło, P. Sanghani, T. J. Bandosz, and J. A. Schwarz, Carbon 30, 507 (1992).CrossRefGoogle Scholar
  7. 7.
    T. J. Bandosz, J. Jagiełło, and J.A. Schawrz, Langmuir 9, 2518 (1993).CrossRefGoogle Scholar
  8. 8.
    C. De Boor, A practical Guide to Splines, Springer-Verlag, New York, 1978.Google Scholar
  9. 9.
    B. W. Silverman, J. R. Statist. Soc. B 47, 1 (1985).Google Scholar
  10. 10.
    P. Craven, G. Whaba, Numer. Math. 31, 377 (1979).CrossRefGoogle Scholar
  11. 11.
    G. Wahba, J. R. Statist. Soc. B 45, 1333 (1983)Google Scholar
  12. 12.
    W. A. House, M. Jaycock, J. Colloid Polym. Sci. 256, 52 (1978)CrossRefGoogle Scholar
  13. 13.
    R. K. Iler, The Colloid Chemistry of Silica and Silicates, Cornell University Press, Ithaca, New York, 1955, pp. 233–275.Google Scholar
  14. 14.
    J. Jagiełło, G. Ligner, E. Papirer, J. Colloid Interface Sci. 137, 128 (1990).CrossRefGoogle Scholar
  15. 15.
    I. Tijburg, J. Jagiełło, A. Vidal, E. Papirer, Langmuir 7, 2243 (1991).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Jacek Jagiello
    • 1
    • 3
  • Teresa J. Bandosz
    • 3
  • Karol Putyera
    • 2
    • 3
  • James A. Schwarz
    • 3
  1. 1.Institute of Energochemistry of Coal and Physical Chemistry of SorbentsUniversity of Mining and MetallurgyKrakowPoland
  2. 2.Institute of Inorganic ChemistrySlovak Academy of SciencesBratislavaSlovakia
  3. 3.Department of Chemical Engineering and Materials ScienceSyracuse UniversitySyracuseUSA

Personalised recommendations