Heats of Adsorption from Molecular Models of Adsorption in Heterogeneous Solids

  • T. Vuong
  • P. A. Monson
Part of the The Kluwer International Series in Engineering and Computer Science book series (SECS, volume 356)


In this paper we present calculations of heats of adsorption via grand canonical Monte Carlo simulations for molecular models of adsorption in heterogeneous porous solids. The molecular models considered in this work treat the adsorbent as a collection of particles arranged in a predefined micro-structure, and in the present case describe the adsorption of simple molecules in high surface area silica gel. We have assessed the relative importance of the adsorbate-solid and adsorbate-adsorbate molecular interactions in determining the coverage dependence of the heat of adsorption, and also how these contributions change with the adsorbent microstructure. The accuracy of different methods for obtaining the isosteric heat from the Monte Carlo simulations is also investigated.


Bulk Fluid Isosteric Heat Adsorbate Density Coverage Dependence Composite Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. M. Ruthven, Principles of Adsorption and Adsoiption Processes, Wiley Interscience, New York, 1982.Google Scholar
  2. 2.
    D. P. Valenzuela and A. L. Myers, Adsorption Equilibrium Data Handbook, Prentice-Hall, Englewood Cliffs, NJ, 1989.Google Scholar
  3. 3.
    V. Bakaev and W. A. Steele, Langmuir, 8, 148–154 (1992).CrossRefGoogle Scholar
  4. 4.
    F. Karavias and A. L. Myers, Langmuir, 7, 3118–3126 (1991).CrossRefGoogle Scholar
  5. 5.
    G. B. Woods, A. Z. Panagiotopoulos and J. S. Rowlinson, Mol. Phys., 63, 49–63 (1988).CrossRefGoogle Scholar
  6. 6.
    E. A. Segarra and E. D. Glandt, Chem. Eng. Sci., 49, 2953–2965 (1994).CrossRefGoogle Scholar
  7. 7.
    R. D. Kaminsky and P. A. Monson, J. Chem. Phys., 95, 2936–2948 (1991).CrossRefGoogle Scholar
  8. 8.
    R. D. Kaminsky and P. A. Monson, in Fundamentals of Adsorption, M. Suzuki editor, Kodansha Publishing Co., Japan, 309–314 (1993).CrossRefGoogle Scholar
  9. 9.
    R. D. Kaminsky and P. A. Monson, Langmuir, 10, 530–537 (1994).CrossRefGoogle Scholar
  10. 10.
    R. D. Kaminsky and P. A. Monson, Chem. Eng. Sci., 49, 2967–2977 (1994).CrossRefGoogle Scholar
  11. 11.
    W. G. Madden and E. D. Glandt, J. Stat. Phys., 51, 537–558 (1988).CrossRefGoogle Scholar
  12. 12.
    J. A. Given and G. Stell, J. Chem. Phys., 97, 4573–4574 (1992).CrossRefGoogle Scholar
  13. 13a.
    L. A. Fanti and E. D. Glandt, J. Colloid Interface Sci., 135, 385–395 (1990);CrossRefGoogle Scholar
  14. 13b.
    L. A. Fanti and E. D. Glandt, J. Colloid Interface Sci., 135, 396–404 (1990)CrossRefGoogle Scholar
  15. 13c.
    L. A. Fanti, E. D. Glandt, and W. G. Madden, J. Chem. Phys., 93, 5945–5953 (1990).CrossRefGoogle Scholar
  16. 14.
    V. Bakaev, Surf. Sci., 198, 571–592 (1988).CrossRefGoogle Scholar
  17. 15.
    J. M. D. MacElroy and K. Raghavan, J. Chem. Phys., 93, 2068–2079 (1990).CrossRefGoogle Scholar
  18. 16.
    J. M. D. MacElroy, Langmuir, 9, 2682–2692 (1993).CrossRefGoogle Scholar
  19. 17.
    C. Vega, R. D. Kaminsky and P. A. Monson, J. Chem. Phys., 99, 3003–3013 (1993).CrossRefGoogle Scholar
  20. 18.
    E. Lomba, J. A. Given, G. Stell, J-J. Weis, and D. Levesque, Phys. Rev. E, 48, 233–244 (1993).CrossRefGoogle Scholar
  21. 19.
    M. L. Rosinberg, G. Tarjus and G. Stell, J. Chem. Phys., 100, 5172 (1994)CrossRefGoogle Scholar
  22. 20.
    T. Vuong and P. A. Monson, in preparation.Google Scholar
  23. 21.
    D. Nicholson and N. G. Parsonage, Computer Simulation and the Statistical Mechanics of Adsorption, Academic Press, London, 1982.Google Scholar
  24. 22.
    W. A. Steele, The Interaction of gases with solid surfaces, Pergamon, Oxford (1973).Google Scholar
  25. 23.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.Google Scholar
  26. 24a.
    S. Masukawa, A Study on Two Phase Equilibria by Use of the Elution Gas Chromatographic Technique The Methane-Ethane-Silica Gel System and the Methane-Normal Octane System. Rice University, Houston, 1967;Google Scholar
  27. 24b.
    S. Masukawa, and R. Kobayashi, J. Chem. Eng. Data, 13, 197–199 (1968). Only values of qeq are given in this work. We are currently computing qst from the isotherm data and the comparison will presented elsewhere [20].CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • T. Vuong
    • 1
  • P. A. Monson
    • 1
  1. 1.Department of Chemical EngineeringUniversity of MassachusettsAmherstUSA

Personalised recommendations