Hyperellipsoidal Clustering

  • Yoshiteru Nakamori
  • Mina Ryoke
Part of the International Series in Intelligent Technologies book series (ISIT, volume 7)

Abstract

We present a hyperellipsoidal clustering method that becomes the focal point of the fuzzy modeling procedure. The aim of developing a clustering algorithm is to control the shapes of clusters flexibly. This is achieved to a great extent by introducing design and tuning parameters. We propose a simple clustering algorithm which combines hierarchical and non-hierarchical procedures, and dose not require a priori assumption on the number, centroids, and volumes of clusters.

Keywords

Covariance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Takagi and M. Sugeno: Fuzzy Identification of Systems and Its Applications to Modeling and Control. IEEE Trans, on Systems, Man and Cybernetics, Vol.SMC-15, No.1, pp.116–132, 1985.Google Scholar
  2. [2]
    M. Sugeno and G.T. Kang: Fuzzy Modeling and Control of Multilayer Incinerator. Fuzzy Sets and Systems, Vol.18, pp.329–346, 1986.MATHCrossRefGoogle Scholar
  3. [3]
    M. Sugeno and G.T. Kang: Structure Identification of Fuzzy Model. Fuzzy Sets and Systems. Vol.28, pp.15–33, 1988.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Y. Nakamori: Development and Application of an Interactive Modeling Support System. Automatica, Vol.25, No.2, pp. 185–206, 1989.CrossRefGoogle Scholar
  5. [5]
    M. Kainuma, Y. Nakamori and T. Morita: Integrated Decision Support System for Environmental Planning. IEEE Trans. Syst. Man and Cybern., Vol.SMC-20, No.4, pp.777–790, 1990.CrossRefGoogle Scholar
  6. [6]
    J. Dunn: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. J. Cybernetics, Vol.3, pp.32–57, 1974.MathSciNetCrossRefGoogle Scholar
  7. [7]
    J.C. Bezdek: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York, 1981.MATHGoogle Scholar
  8. [8]
    J.C. Bezdek et al.: Detection and Characterization of Cluster Substructure I. Linear Structure: Fuzzy c-Lines. SIAM J. Appl. Math., Vol.40, No.2, pp.339–357, 1981.MathSciNetMATHGoogle Scholar
  9. [9]
    J.C. Bezdek et al.: Detection and Characterization of Cluster Substructure II. Fuzzy c-Varieties and Convex Combinations Thereof. SIAM J. Appl. Math., Vol.40, No.2, pp.358–372, 1981.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    R.J. Hathaway and J.C. Bezdek: Switching Regression Models and Fuzzy Clustering. IEEE Trans, on Fuzzy Systems, Vol.1, No.3, pp.195–204, 1993.CrossRefGoogle Scholar
  11. [11]
    D.W. Hosmer, Jr.: Maximum Likelihood Estimates of the Parameters of a Mixture of Two Regression Lines. Communications in Statistics, Vol.3, No. 10, pp.995–1005, 1974.Google Scholar
  12. [12]
    R.W. Gunderson and R. Canfield: Piece-Wise Multilinear Prediction from FCV Disjoint Principal Component Models. Proc. of 3rd IFSA Congress, pp.540–543, Washington, August 6–11, 1989.Google Scholar
  13. [13]
    J.H. Ward, Jr.: Hierarchical Grouping to Optimize an Objective Function. J. Amer. Statist. Assoc, Vol.58, pp.236–244, 1963.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Y. Tanaka and K. Wakimoto: Methods of Multivariate Statistical Analysis. Gendai-Sugakusya, (in Japanese), 1983.Google Scholar
  15. [15]
    M.J. Box, D. Davies and W.H. Swann: Non-Linear Optimization Techniques. Obiver & Boyd, pp.52–54, 1969.Google Scholar
  16. [16]
    J.M. Hammersley and D.C. Handscomb: Monte Carlo Methods. John Wiley &: Sons, New York, 1964.MATHGoogle Scholar
  17. [17]
    D.E. Gustafson and W.C. Kessel: Fuzzy Clustering with A Fuzzy Covariance Matrix. Proc. IEEE CDC, pp.761–766, San Diago, CA, 1979.Google Scholar
  18. [19]
    I. Gath and A.B. Geva: Unsupervised Optimal Fuzzy Clustering. IEEE Trans. Pattern Anal. Machine Intell., Vol.11, No.5, pp.773–781, 1989.CrossRefGoogle Scholar
  19. [19]
    R.N. Dave: An Adaptive Fuzzy c-Elliptotype Clustering Algorithm. Proc. NAFIPS 90: Quater Century of Fuzziness, Vol.1, pp.9–12, 1990.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Yoshiteru Nakamori
    • 1
  • Mina Ryoke
    • 1
  1. 1.Department of Applied MathematicsKonan UniversityHigashinada-ku, KobeJapan

Personalised recommendations