Static Measurements and Parameter Extraction

  • Gérard Ghibaudo
Part of the The Kluwer International Series in Engineering and Computer Science book series (SECS, volume 352)


The Metal-Oxide-Semiconductor field effect transistor (MOSFET) is one of the key devices for the fabrication of very (or ultra) large scale integrated circuits in modern microelectronics. The performance of the MOSFET is primarily determined by the quality of the gate dielectrics and that of the Si — SiO2 interface which directly affects the carrier transport properties. On the other hand, the modeling of the device characteristics requires the rigorous definition of the MOSFET parameters which mainly control the device operation. Furthermore, the design of analog and digital circuits relies on electrical simulations based on SPICE-like programs in which state-of-the-art MOSFET static models have to be implemented in analytical forms. For this reason, the modeling of the submicron MOS transistor is a mandatory issue for the development of new CMOS circuits and semiconductor memories. Besides, the static measurements and the corresponding parameter extraction of MOSFETs have proved to be a powerful and simple characterization tool even though they are not competing with other electrical techniques also presented in this book.


Gate Voltage Gate Length Drain Voltage Strong Inversion Weak Inversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Merckel, J. Borel, N. Cupcea, IEEE Trans Electron Devices, 19, 681 (1972).CrossRefGoogle Scholar
  2. [2]
    R. Swansson, J. Meindl, Proc. IEEE Int Solid State Circuits Conf., 110 (1975).Google Scholar
  3. [3]
    J. R. Brews, Sol State Electron, 21, 345 (1978).CrossRefGoogle Scholar
  4. [4]
    P. Muls, G. Declerck, R. Van Overstraeten, Advances in Electronics and E)lectron Physics, 47, 197 (1978).Google Scholar
  5. [5]
    M. White, F. Van de Wiele, J. P. Lambot, IEEE Trans Electron Devices, 27, 899 (1980).CrossRefGoogle Scholar
  6. [6]
    L. Akers, J. J. Sanchez, Sol State Electron, 25, 621 (1982).CrossRefGoogle Scholar
  7. [7]
    T. Yamaguchi, S. Morimoto, IEEE Trans Electron Devices, 30, 559 (1983).CrossRefGoogle Scholar
  8. [8]
    P. Guebels, F. Van de Wiele, Sol State Electron, 26, 267 (1983).CrossRefGoogle Scholar
  9. [9]
    T. Grottjohn, B. Hoefflinger, IEEE Trans Electron Devices, 31, 234 (1984).CrossRefGoogle Scholar
  10. [10]
    G. Ghibaudo, Phys. Stat. Solidi (a), 95, 323 (1986).CrossRefGoogle Scholar
  11. [11]
    A. Hiroki, S. Odamaka, S. K. Ohe, H. Esaki, IEEE Electron Devices Letters, 8, 231 (1987).CrossRefGoogle Scholar
  12. [12]
    G. Ghibaudo, Phys. Stat. Sol (a), 113, 223 (1989).CrossRefGoogle Scholar
  13. [13]
    S. M. Sze, Physics of Semiconductor Devices, Wiley, New-York, 1981.Google Scholar
  14. [14]
    R.S. Muller and T.I. Kamins, Device Electronics for Integrated Circuits John Wiley, New-York, 1986.Google Scholar
  15. [15]
    C.L. Huang and G. Gildenblat, IEEE Trans Electron Devices, ED-37, 1289 (1990).CrossRefGoogle Scholar
  16. [16]
    V.M. Agostinelli, H. Shin, A.F. Tasch, IEEE Trans Electron Devices, ED-38, 151 (1991).CrossRefGoogle Scholar
  17. [17]
    A. Emrani, F. Balestra, G. Ghibaudo, IEEE Trans Electron Devices, ED-40, 564 (1993).CrossRefGoogle Scholar
  18. [18]
    G. Merckel, Sol. State Electron, 23, 1207 (1980).CrossRefGoogle Scholar
  19. [19]
    Z.H. Liu, C. Hu, J.H. Huang, T.Y. Chan, M.C. Jeng, P.K. Ko, Y.C. Cheng, IEEE Trans Electron Devices, ED-40, 86 (1993).CrossRefGoogle Scholar
  20. [20]
    G. Pellegrini and R.L. Anderson, J. Appl. Phys., 72, 3606 (1992).CrossRefGoogle Scholar
  21. [21]
    G. Ghibaudo, B. Cabon, Electronics Letters, 22, 1010 (1986).CrossRefGoogle Scholar
  22. [22]
    G. Ghibaudo, B. Cabon, Sol State Electron, 30, 1049 (1987).CrossRefGoogle Scholar
  23. [23]
    W. Fikry, G. Ghibaudo, M. Dutoit, Electronics Letters, 30, 911 (1994).CrossRefGoogle Scholar
  24. [24]
    F.M. Klaassen, Proc. ESSDERC 90, Nottingham, UK, 1990, Eds. W. Eccleston and P.J. Rosser (Adam Hilger, Bristyol 1990) p.181.Google Scholar
  25. [25]
    H.S. Wong, M.H. White, T.J. Krutsick, R.V. Booth, Sol State Electron, 30, 953 (1987).CrossRefGoogle Scholar
  26. [26]
    T.J. Krutsick, M.H. White, H.S. Wong, R.V. Booth, IEEE Trans Electron Devices, ED-34, 1676 (1987).CrossRefGoogle Scholar
  27. [27]
    P.R. Karlsson and K.O. Jeppson, IEEE Trans Electron Devices, ED-39, 2070 (1992).CrossRefGoogle Scholar
  28. [28]
    C. C. McAndrew and P.A. Layman, IEEE Trans Electron Devices, ED-39, 2298 (1992).CrossRefGoogle Scholar
  29. [29]
    G. Ghibaudo, Electronics Letters, 24, 543 (1988).CrossRefGoogle Scholar
  30. [30]
    I.M. Hafez, F. Balestra, G. Ghibaudo, J. Appl Phys., 68, 3694 (1990).CrossRefGoogle Scholar
  31. [31]
    D. Bauza and G. Ghibaudo, Microelectronics Journal, 25, 41 (1994).CrossRefGoogle Scholar
  32. [32]
    A. Emrani, G. Ghibaudo, F. Balestra, Electronics Letters, 29, 786 (1993).CrossRefGoogle Scholar
  33. [33]
    M. Ida and C. Kita, Proc. of IEEE Int. Conf. on Microelectronics Test Structures, March 1990.Google Scholar
  34. [34]
    S. S. Chung and J.S. Lee, IEEE Trans Electron Devices, ED-40, 1709 (1993).CrossRefGoogle Scholar
  35. [35]
    J.R. Brews, Physics of MOS transistors, in Applied Solid State Science, Supp. 2A (Academic Press, 1981) p. 1.Google Scholar
  36. [36]
    E. H. Nicollian and J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology John Wiley, New York, (1982).Google Scholar
  37. [37]
    C. Nguyen-Duc, G. Ghibaudo, F. Balestra, Phys. Stat Sol (a), 126, 553 (1991).CrossRefGoogle Scholar
  38. [38]
    A. Emrani, G. Ghibaudo, F. Balestra, Electronics Letters, 27, 467 (1991).CrossRefGoogle Scholar
  39. [39]
    A. Emrani, G. Ghibaudo, F. Balestra, Sol. State Electron, 37, 111 (1993).CrossRefGoogle Scholar
  40. [40]
    G. Ghibaudo, Phys Stat Solidi (a), 99, K149 (1987).CrossRefGoogle Scholar
  41. [41]
    W.Y. Jang, C.Y. Wu, H.J. Wu, Sol Stat. Electron, 31, 1421 (1988).CrossRefGoogle Scholar
  42. [42]
    T.Y. Chan, P.K. Ko, C. Hu, IEEE Electron Device Letters, EDL-6, 551 (1985).CrossRefGoogle Scholar
  43. [43]
    K. Rais, PhD Thesis, University El Jadida (July 1994).Google Scholar
  44. [44]
    C.G. Sodini, P.K. Ko, J.L. Moll, IEEE Trans Electron Devices, ED-31, 1386 (1984).CrossRefGoogle Scholar
  45. [45]
    G. Shahidi, D. Antionadis, H. Smith, Electron Device Letters, EDL-9, 94 (1988).CrossRefGoogle Scholar
  46. [46]
    A. Modelli and S. Manzini, Sol Stat. Electron, 31, 99 (1988).CrossRefGoogle Scholar
  47. [47]
    K. Rais, G. Ghibaudo, F. Balestra, M. Dutoit, Proc. 1st European Workshop on Low Temperature Electronics (WOLTE 1), Eds. G. Ghibaudo and F. Balestra, J. Phys. IV, C6, June 1994, p. 19.Google Scholar
  48. [48]
    J.E. Chung, M.C. Jeng, J.E. Moon, P.K. Ko, C. Hu, IEEE Trans Electron Devices, ED-38, 545 (1991).CrossRefGoogle Scholar
  49. [49]
    Operating manual of model K236–238, Keithley Instruments Inc., Cleveland, USA, 1989.Google Scholar
  50. [50]
    Operating manual of model HP4145, Hewlett-Packard Inc., Palo Alto, USA, 1990.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Gérard Ghibaudo
    • 1
  1. 1.Laboratoire de Physique des Composants à SemiconducteursGrenobleFrance

Personalised recommendations