Elucidating molecular mechanisms of septic cardiomyopathy — the cardiomyocyte model

  • Karl Werdan
  • Ursula Müller-Werdan
Chapter
Part of the Developments in Molecular and Cellular Biochemistry book series (DMCB, volume 19)

Abstract

In the multiple organ dysfunction syndrome of sepsis and septic shock the heart is one of the organs subject to failure. Many new insights into the mechanisms underlying septic cardiomyopathy were gained in the last years. Experimental work with neonatal and adult cardiomyocytes considerably contributed to this progress, facilitating the documentation of direct attenuation of the contractions of the heart muscle cell by toxins and mediators, as well as investigating the underlying cellular mechanisms. With this respect, contractile-depressant effects have been found in cardiomyocytes for many toxins and sepsis mediators, with endotoxin, Pseudomonas exotoxin A, tumor necrosis factor α, interleukin-1 and nitric oxide being the most relevant ones identified. These substances interfere at clinically relevant concentrations with several main inotropic axes, not only with the β-adrenoceptor/adenylyl cyclase and with the NO-cGMP-system — on which most of the interest is focused at present — but also with the α1-adrenoceptor/phosphoinositide pathway and the Ca2+ homeostasis of the cardiomyocyte, the latter representing the common final inotropic pathway. Not a single cardiodepressant factor, but more likely a total bunch of toxins and mediators with different attack mechanisms seem to contribute to the picture of septic cardiomyopathy.

Key words

septic cardiomyopathy cardiomyocyte endotoxin nitric oxide tumor necrosis factor α cardiodepressant factor (CDF) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kumar A, Parrillo JE: Nitric oxide and the heart in sepsis. In: MP Fink, D Payen (eds). Role of Nitric Oxide in Sepsis and ARDS (Update in Intensive Care and Emergency Medicine 24). Springer-Verlag, Berlin, Heidelberg, New York, 1995, pp 73–99Google Scholar
  2. 2.
    Vincent JL, Preiser JC, Zhang H: Blocking the effects of nitric oxide in septic shock. In: MP Fink, D Payen (eds). Role of Nitric Oxide in Sepsis and ARDS (Update in Intensive Care and Emergency Medicine 24). Springer Verlag, Berlin, Heidelberg, New York, 1995, pp 253–273Google Scholar
  3. 3.
    Müller-Werdan U, Reithmann C, Werdan K: Cytokines and the Heart: Molecular Mechanisms of Septic Cardiomyopathy. Landes Company (Georgetown, USA), Chapman and Hall (New York, USA), Springer-Verlag (Heidelberg, Germany), 1996Google Scholar
  4. 4.
    Parrillo JE: The cardiovascular pathophysiology of sepsis. Ann Rev Med 40: 469–485, 1989PubMedCrossRefGoogle Scholar
  5. 5.
    Goldfarb RD, Tambolini W, Wiener SM, Weber PB: Canine left ventricular performance during LD50 endotoxemia. Am J Physiol 244: H370–H377, 1983PubMedGoogle Scholar
  6. 6.
    Vincent J-L, Gris P, Coffernils M, Leon M, Pinsky M, Reuse C, Kahn RJ: Myocardial depression characterizes the fatal course of septic shock. Surgery 111: 660–667, 1992PubMedGoogle Scholar
  7. 7.
    Pilz G, McGinn P, Boekstegers P, Kääb S, Weidenhöfer S, Werdan K: Pseudomonas sepsis does not cause more severe cardiovascular dysfunction in patients than non-Pseudomonas sepsis. Circulatory Shock 42: 174–182, 1994PubMedGoogle Scholar
  8. 8.
    Natanson C Eichacker PQ, Hoffman WD, Banks SM, MacVittie TJ, Parrillo JE: Human recombinant interleukin-1 (IL-1) produced effects on canine cardiovascular (CV) function. Clin Res 37: 346A, 1989Google Scholar
  9. 9.
    Balligand J-L, Kelly RA, Marsden PA, Smith TW, Michel T: Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci USA 90: 347–351, 1993PubMedCrossRefGoogle Scholar
  10. 10.
    Balligand J-L, Ungureanu D, Kelly RA, Kobzik L, Pimental D, Michel T, Smith TW: Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J Clin Invest 91: 2314–2319, 1993PubMedCrossRefGoogle Scholar
  11. 11.
    Mery P-F, Pavoine C, Belhassen L, Pecker F, Fischmeister R: Nitric oxide regulates cardiac Ca2+ current-involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterase through guanylyl cyclase activation. J Biol Chem 268: 26286–26295, 1993PubMedGoogle Scholar
  12. 12.
    Murad F: Regulation of cytosolic guanylyl cyclase by nitric oxide: The NO-cyclic GMP signal transduction system. Adv Pharmacol 26: 19–33, 1994PubMedCrossRefGoogle Scholar
  13. 13.
    Parrillo E: Pathogenetic mechanisms of septic shock. N Engl J Med 328: 1471–1477, 1993PubMedCrossRefGoogle Scholar
  14. 14.
    Szabo C, Wu C-C, Gross SS, Thiemermann C, Vane JR: Interleukin-1 contributes to the induction of nitric oxide synthase by endotoxin in vivo. Eur J Pharmacol 250: 157–160, 1993PubMedCrossRefGoogle Scholar
  15. 15.
    Thiemermann C: The role of the L-arginine: Nitric oxide pathway in circulatory shock. Adv Pharmacol 28: 45–79, 1994PubMedCrossRefGoogle Scholar
  16. 16.
    Kirstein M, Rivet-Bastide M, Hatem S, Benardeau A, Mercadier J-J, Fischmeister R: Nitric oxide regulates the calcium current in isolated human atrial myocytes. J Clin Invest 95: 794–802, 1995PubMedCrossRefGoogle Scholar
  17. 17.
    Weyrich AS, Ma X-I, Buerke M, Murohara T, Armstead VE, Lefer AM, Nicolas JM, Thomas AP, Lefer DJ, Vinten-Johansen J: Physiological concentrations of nitric oxide do not elicit an acute negative inotropic effect in unstimulated cardiac muscle. Circ Res 75: 692–700, 1994PubMedGoogle Scholar
  18. 18.
    Benyo Z, Kiss G, Szabo C, Csaki C, Kovach AGB: Importance of basal nitric oxide synthesis in regulation of myocardial blood flow. Cardiovasc Res 25: 700–703, 1991PubMedCrossRefGoogle Scholar
  19. 19.
    Zweier JL, Wang P, Samouilov A, Kuppusamy P (1995) Enzyme-independent formation of nitric oxide in biological tissues. Nature Med 1: 804–809 and 1103 (letters to the editor), 1995PubMedCrossRefGoogle Scholar
  20. 20.
    Bloos F, Sibbald WJ: Cardiocirculation in Sepsis. In: K Reinhart, K Eyrich, C Sprung (eds). Sepis — Current Perspectives in Pathophysiology and Therapy (Update in Intensive Care and Emergency Medicine 18). Springer, Berlin, Heidelberg, 1994, pp 139–149Google Scholar
  21. 21.
    Natanson C, Eichenholz PW, Danner RL, Eichacker PQ, Hoffman WD, Kuo GC, Banks SM, Macvittie TJ, Parrillo JE: Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. J Exp Med 169: 823–832, 1989PubMedCrossRefGoogle Scholar
  22. 22.
    Suffredini AF, Fromm RE, Parker MM, Brenner M, Kovacs JA, Wesley RA, Parrillo JE: The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med 321: 280–287, 1989PubMedCrossRefGoogle Scholar
  23. 23.
    Martich GD, Boujoukos AJ, Suffredini AF: Response of man to endotoxin. Immunobiol 187: 403–416, 1993Google Scholar
  24. 24.
    Brady AJB, Warren JB, Poole-Wilson PA, Williams TJ, Harding SE: Nitric oxide attenuates cardiac myocyte contraction. Am J Physiol 265: H176–H182, 1993PubMedGoogle Scholar
  25. 25.
    Hung J, Lew WYW: Cellular mechanisms of endotoxin-induced myocardial depression in rabbits. Circ Res 73: 125–134, 1993PubMedGoogle Scholar
  26. 26.
    Liu M-S: Mechanisms of myocardial membrane alterations in endotoxin shock: Roles of phospholipase and phosphorylation. Circ Shock 30:43–49, 1990PubMedGoogle Scholar
  27. 27.
    Bensard DD, Banerjee A, McIntyre RC, Berens RL, Harken AH: Endotoxin disrupts β-adrenergic signal transduction in the heart. Arch Surg 129: 198–205, 1994PubMedGoogle Scholar
  28. 28.
    Brady AJB, Poole-Wilson PA, Harding SE, Warren JB: Nitric oxide production within cardiac myocytes reduces their contractility in endotoxemia. Am J Physiol 263: H1963–H1966, 1992PubMedGoogle Scholar
  29. 29.
    Meyer J, Lentz CW, Stothert JC, Traber LD, Herndon DN, Traber DL: Effects of nitric oxide synthesis inhibition in hyperdynamic endotoxemia. Crit Care Med 22: 306–312, 1994PubMedCrossRefGoogle Scholar
  30. 30.
    Smith REA, Palmer RMJ, Moncada S: Coronary vasodilatation induced by endotoxin in the rabbit isolated perfused heart is nitric oxide-dependent and inhibited by dexamethasone. Br J Pharmacol 104: 5–6,1991PubMedGoogle Scholar
  31. 31.
    Giroir BP, Johnson JH, Brown T, Allen GL, Beutler B: The tissue distribution of tumor necrosis factor biosynthesis during endotoxemia. J Clin Invest 90: 693–698, 1992PubMedCrossRefGoogle Scholar
  32. 32.
    Schulz R, Nava E, Moncada S: Induction and potential biological relevance of a Ca2+-independent nitric oxide synthase in the myocardium. Br J Pharmacol 105: 575–580, 1992PubMedGoogle Scholar
  33. 33.
    Ochoa JB, Udekwu AO, Billiar TR, Curran RD, Cerra FB, Simmons RL, Peitzman AB: Nitrogen oxide levels in patients after trauma and during sepsis. Ann Surg 214: 621–625, 1991PubMedCrossRefGoogle Scholar
  34. 34.
    Wang J, Zhao G, Shen W, Ochoa M, Moore D, Hubbard JW, Hintze TH: Effects of an orally active NO-releasing agent, CAS 936, and its active metabolite, 3754, on cardiac and coronary dynamics in normal conscious dogs and after pacing-induced heart failure. J Cardiovasc Pharmacol 22 (Suppl 7): S51–S58, 1993PubMedGoogle Scholar
  35. 36.
    Kwiatkowska-Patzer B, Patzer JA, Heller LJ: Pseudomonas aeruginosa exotoxin A enhances automaticity and potentiates hypoxic depression of isolated rat hearts. Proc Soc Exp Biol Med 202: 377–383, 1993PubMedGoogle Scholar
  36. 37.
    Reithmann C, Gierschik P, Müller U, Werdan K, Jakobs KH: Pseudomonas exotoxin A prevents β-adrenoceptor-induced upregulation of Gi protein α-subunits and adenylyl cyclase desensitization in rat heart muscle cells. Mol Pharmacol 37: 631–638, 1990PubMedGoogle Scholar
  37. 38.
    Danner RL, Natanson C, Elin RJ, Hosseini JM, Banks S, MacVittie TJ, Parrillo JE: Pseudomonas aeruginosa compared with Escherichia coli produces less endotoxemia but more cardiovascular dysfunction and mortality in a canine model of septic shock. Chest 98: 1480–1487, 1990PubMedCrossRefGoogle Scholar
  38. 39.
    Blick M, Sherwin SA, Rosenblum M, Gutterman J: Phase I study of recombinant tumor necrosis factor in cancer patients. Cancer Res 47: 2986–2989, 1987PubMedGoogle Scholar
  39. 40.
    Eichenholz PW, Eichacker PQ, Hoffman WD, Banks SM, Parrillo JE, Danner RL, Natanson C: Tumor necrosis factor challenges in canines: Patterns of cardiovascular dysfunction. Am J Physiol 263: H668–H675, 1992PubMedGoogle Scholar
  40. 41.
    Hegewisch S, Weh H-J, Hossfeld DK: TNF-induced cardiomyopathy. Lancet 335: 294–295, 1990PubMedCrossRefGoogle Scholar
  41. 42.
    Odeh M: Tumor necrosis factor-α as a myocardial depressant substance. Int J Cardiol 42: 231–238, 1994CrossRefGoogle Scholar
  42. 43.
    Schirmer WJ, Schirmer JM, Fry DE: Recombinant human tumor necrosis factor produces hemodynamic changes characteristic of sepsis and endotoxemia. Arch Surg 124: 445–448, 1989PubMedGoogle Scholar
  43. 44.
    Selby P, Hobbs S, Viner C, Jackson E, Jones A, Newell D, Calvert AH, McElwain T, Fearon K, Humphreys et al.: Tumor necrosis factor in man: Clinical and biological observations. Br J Cancer 56: 803–808, 1987PubMedCrossRefGoogle Scholar
  44. 45.
    van der Poll T, van Deventer JH: Tumor necrosis factor α: A common mediator of the spectrum of diverse changes in sepsis. In J-L Vincent (ed.) Yearbook of Intensive Care and Emergency Medicine 1993. Springer, Berlin, 1993, pp 84–99Google Scholar
  45. 46.
    Marks JD, Marks CB, Luce JM, Montgomery AB, Turner J, Metz CA, Murray JF. Plasma tumor necrosis factor in patients with septic shock: Mortality rate, incidence of adult respiratory distress syndrome, and effects of methylprednisolone administration. Am Rev Respir Dis 141: 94–97, 1990PubMedGoogle Scholar
  46. 47.
    van der Poll T, Jansen J, van Leenen D, von der Möhlen M, Levi M, ten Cate H, Gallati H, ten Cate JW, van Deventer SJH. Release of Soluble Receptors for Tumor Necrosis Factor in Clinical Sepsis and Experimental Endotoxemia. J Infect Dis 168: 955–960, 1993PubMedCrossRefGoogle Scholar
  47. 48.
    Pilz G, Fraunberger P, Appel R, Kreuzer E, Werdan K, Walli A, Seidel D: Early prediction of outcome in score identified post cardiac surgical patients at high risk for sepsis using soluble TNF receptor p55 concentrations. Crit Care Med 24: 596–600, 1996PubMedCrossRefGoogle Scholar
  48. 49.
    DeMeules JE, Pigula FA, Mueller M, Raymond SJ, Gamelli RL. Tumor necrosis factor αnd cardiac function. J Trauma 32: 686–692, 1992PubMedCrossRefGoogle Scholar
  49. 50.
    Boekstegers P, Kainz I, Giehrl W, Peter W, Werdan K: Subchronic exposure of cardiomyocytes to low concentrations of tumor necrosis factor α attenuates the positive inotropic response not only to catecholamines but also to cardiac glycosides and high calcium concentrations. Mol Cell Biol 156: 135–143, 1996Google Scholar
  50. 51.
    Gulick T, Chung MK, Pieper SJ, Lange LG, Schreiner GF. Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte β-adrenergic responsiveness. Proc Natl Acad Sci USA 86: 6753–6757, 1989PubMedCrossRefGoogle Scholar
  51. 52.
    Chung MK, Gulick TS, Rotondo RE, Schreiner GF, Lange LG. (1990) Mechanism of cytokine inhibition of beta-adrenergic agonist stimulation of cyclic AMP in rat cardiac myocytes — Impairment of signal transduction. Circ Res 753–763, 1990Google Scholar
  52. 53.
    Reithmann C, Gierschik P, Werdan K, Jakobs KH. Tumor necrosis factor α up-regulates G and Gβ proteins and adenylate cyclase responsiveness in rat cardiomyocytes. Eur J Pharmacol — Mol Pharmacol Section 206: 53–60, 1991CrossRefGoogle Scholar
  53. 54.
    Reithmann C, Gierschik P, Jakobs KH, Werdan K. Regulation of adenylyl cyclase by noradrenaline and tumor necrosis factor α in rat cardiomyocytes. Eur Heart J 12 (Suppl F): 139–142, 1991PubMedGoogle Scholar
  54. 55.
    Reithmann C, Werdan K. Tumor necrosis factor α decreases inositol phosphate formation and phosphatidylinositolbisphosphate (PIP2) synthesis in rat cardiomyocytes. Naunyn-Schmiedeberg’s Arch Pharmacol 349: 175–182, 1994CrossRefGoogle Scholar
  55. 56.
    Werdan K, Müller-Werdan U, Reithmann C, Boekstegers P, Fuchs R, Kainz I, Stadler J. Nitric oxide-dependent and nitric oxide-independent effects of tumor necrosis factor α on cardiomyocyte’s beating activity and signal transduction pathways. In: G Schlag, H. Redl H (eds). 4th Wiggers Bernard Conference on Shock, Sepsis and Organ Failure. Springer, Berlin, 1995, 287–309Google Scholar
  56. 57.
    Chess-Williams RG, Sheridan DJ, Broadley KJ. Arrhythmias and α1-adrenoceptor binding characteristics of the guinea-pig perfused heart during ischaemia and reperfusion. J Mol Cell Cardiol 22: 599–606, 1990PubMedCrossRefGoogle Scholar
  57. 58.
    Krown KA, Yasui K, Brooker MJ, Dubin AE, Nguyen C, Harris GL, McDonough PM, Glembotski CC, Palade PT, Sabbadini RA. TNFα expression in rat cardiac myocytes: TNFα inhibition of L-type Ca2+ current and Ca2+ transients. FEBS Letters 376: 24–30, 1995PubMedCrossRefGoogle Scholar
  58. 59.
    Yokoyama T, Vaca L, Rossen RD, Durante W, Hazarika P, Mann DL: Cellular basis for the negative inotropic effects of tumor necrosis factor-α in the adult mammalian heart. J Clin Invest 92: 2303–2312, 1993PubMedCrossRefGoogle Scholar
  59. 60.
    Hallström S, Koidl B, Müller U, Werdan K, Schlag G: Cardiodepressant Factors. In: G Schlag, H Redl (eds). Pathophysiology of Shock, Sepsis, and Organ Failure. Springer, Berlin, Heidelberg, 1993, pp 200–214Google Scholar
  60. 61.
    Hallström S, Bernhart E, Müller U, Fürst W, Vogl C, Koidl B, Werdan K, Schlag G: A cardiodepressant factor (CDF) isolated from hemofiltrates of patients in septic and/or cardiogenic shock blocks calcium inward current in cardiomyocytes. Shock Suppl. Vol 2: abstract 1, 1994Google Scholar
  61. 62.
    Hallström S, Koidl B, Müller U, Werdan K, Schlag G: A cardiodepressant factor isolated from blood blocks Ca2+ current in cardiomyocytes. Am J Physiol 260: H869–H876, 1991PubMedGoogle Scholar
  62. 63.
    Reithmann C, Werdan K: Noradrenaline-induced desensitization in cultured heart cells as a model for the defects of the adenylate cyclase system in severe heart failure. Naunyn-Schmiedeberg’s Arch Pharmacol 339: 138–144, 1989CrossRefGoogle Scholar
  63. 64.
    Reithmann C, Hallström S, Pilz G, Kapsner T, Schlag G, Werdan K: Desensitization of rat cardiomyocyte adenylyl cyclase stimulation by plasma of noradrenaline-treated patients with septic shock. Circulatory Shock 41: 48–59, 1994Google Scholar
  64. 65.
    Jones SB, Romano FD: Myocardial beta adrenergic receptor coupling to adenylate cyclase during developmental septic shock. Circ Shock 30:51–60, 1990PubMedGoogle Scholar
  65. 66.
    Silverman HJ, Penaranda R, Orens JB, Lee NH: Impaired β-adrenergic receptor stimulation of cyclic adenosine monophosphate in human septic shock: Association with myocardial hyporesponsiveness to catecholamines. Crit Care Med 21: 31–39, 1993PubMedCrossRefGoogle Scholar
  66. 67.
    Hayes MA, Timmins AC, Yau EHS, Palazzo M, Hinds CJ, Watson D: Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330: 1717–1722, 1994PubMedCrossRefGoogle Scholar
  67. 68.
    Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, Furnagalli RF, for the SvO2 Collaborative Group: A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med 333: 1025–1032, 1995PubMedCrossRefGoogle Scholar
  68. 69.
    Werdan K: Towards a more causal treatment of septic cardiomyopathy. In: J-L Vincent (ed.) Yearbook of Intensive Care and Emergency Medicine 1995. Springer-Verlag, Berlin, Heidelberg, New York, 1995, pp 518–538Google Scholar
  69. 70.
    Weissensee D, Bereiter-Hahn J, Schoeppe W, Löw-Friedrich I. Effects of cytokines on the contractility of cultured cardiac myocytes. Int J Immunopharmac 15: 581–587, 1993CrossRefGoogle Scholar
  70. 71.
    Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL: Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257: 387–389, 1992PubMedCrossRefGoogle Scholar
  71. 72.
    Kumar A, Dimou C, Hollenberg SM, Cunnion RE, Lawrence M, Uretz E, Snell RJ, Parrillo JE: Tumor necrosis factor produces a concentration-dependent depression of myocardial cell contraction in vitro. Clin Res 39:321 A, 1991Google Scholar
  72. 73.
    Snell K, Holder IA, Leppla SA, Saelinger CB: Role of exotoxin and protease as possible virulence factors in experimental infections with Pseudomonas aeruginosa. Infect Immun 19: 839–845, 1978PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Karl Werdan
    • 1
  • Ursula Müller-Werdan
    • 2
  1. 1.Department of Cardiac Intensive Care MedicineMartin-Luther-University of Halle-WittenbergHalle/SaaleGermany
  2. 2.Department of Medicine IIIMartin-Luther-University of Halle-WittenbergHalle/SaaleGermany

Personalised recommendations