Skip to main content

Influence of glycosylation inhibitors on dihydropyridine binding to cardiac cells

  • Chapter
Biochemical Mechanisms in Heart Function

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 18))

  • 158 Accesses

Abstract

In primary cultures of neonatal rat heart cells we found a linear correlation between the number of L-type calcium channel-specific dihydropyridine (DHP) binding sites and spontaneous beating frequency (v).

Formation of glycoproteins in tissue culture was suppressed by different inhibitors of N-glycosylation. This inhibition alters to a different extent the binding of the DHP ligand (+)-[methyl-3H]PN 200-110 and v. The most severe but reversible effect occurs at 6 µ/ml tunicamycin (Bmax ≈ 45% and v ≈ 6%, resp., of control), a slight increase in Bmax at 0.1–0.5 mM castanospermine and 0.05–2.5 mM deoxymannojirimycin. The other inhibitors gave no significant alterations of Bmax. (Mol Cell Biochem 160/161:45–52, 1996)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glossmann H, Striessnig J: Molecular properties of calcium channels. Rev Physiol Biochem Pharmacol 114: 1–105, 1990

    Article  PubMed  CAS  Google Scholar 

  2. Stem MD, Lakatta EG: Excitation-contraction coupling in the heart — The state of the question. FASEB J 6: 3092–3100, 1992

    Google Scholar 

  3. Hofmann F, Biel M, Flockerzi V: Molecular basis for Ca2+ channel diversity. Annu Rev Neurosci 17: 399–418, 1994

    Article  PubMed  CAS  Google Scholar 

  4. Jorgensen AO, Shen AC, Arnold W, Leung AT, Campbell KP: Subcellular distribution of the 1,4-dihydropyridine receptor in rabbit skeletal muscle in situ: An immunofluorescence and immunocolloidal gold-labeling study. J Cell Biol 109: 135–147, 1989

    Article  PubMed  CAS  Google Scholar 

  5. Striessnig J, Berger W, Glossmann H: Molecular properties of voltage-dependent Ca2+ channels in excitable tissues. Cell Physiol Biochem 3: 295–317, 1993

    Article  CAS  Google Scholar 

  6. Singer D, Biel M, Lotan I, Flockerzi V, Hofmann F, Dascal N: The roles of the subunits in the function of the calcium channel. Science 253: 1553–1557, 1991

    Article  PubMed  CAS  Google Scholar 

  7. Hullin R, Biel M, Flockerzi V, Hofmann F: Tissue-specific expression of calcium channels. Trends Cardiovasc Med 3: 48–53, 1993

    Article  PubMed  CAS  Google Scholar 

  8. Williams ME, Feldman DH, Mccue AF, Brenner R, Velicelebi G, Ellis SB, Harpold MM: Structure and functional expression of alpha1, alpha2 and beta subunits of a novel human neuronal calcium channel subtype. Neuron 8: 71–84, 1992

    Article  PubMed  CAS  Google Scholar 

  9. Nargeot J, Dascal N, Lester HA: Heterologous expression of calcium channels. J Membr Biol 126: 97–108, 1992

    PubMed  CAS  Google Scholar 

  10. Welling A, Kwan YW, Bosse E, Flockerzi V, Hofmann F, Kass RS: Subunit-dependent modulation of recombinant L-type calcium channels. Molecular basis for dihydropyridine tissue selectivity. Circ Res 73: 974–980, 1993

    PubMed  CAS  Google Scholar 

  11. Kim H-L, Kim H, Lee P, King RG, Chin H: Rat brain expresses an alternative spliced form of the dihydropyridine-sensitive L-type calcium channel α2 subunit. Proc Natl Acad Sci USA 89: 3251–3255, 1992

    Article  PubMed  CAS  Google Scholar 

  12. Burgess AJ, Norman RI: The large glycoprotein subunit of the skeletal muscle voltage-sensitive calcium channel. Deglycosylation and development. Eur J Biochem 178: 527–533, 1988

    Article  PubMed  CAS  Google Scholar 

  13. Lis H, Sharon N: Protein glycosylation. Structural and functional aspects. Eur J Biochem 218: 1–27, 1993

    Article  PubMed  CAS  Google Scholar 

  14. Stiles GL: Deglycosylated mammalian β2-adrenergic receptors: Effect on radioligand binding and peptide mapping. Arch Biochem Biophys 237:65–71, 1985

    Article  PubMed  CAS  Google Scholar 

  15. Mitsuhashi M, Payan DG: Receptor glycosylation regulates the affinity of histamine H1 receptors during smooth muscle cell differentiation. Mol Pharmacol 35: 311–318, 1989

    PubMed  CAS  Google Scholar 

  16. Habecker BA, Tietje KM, van Koppen CJ, Creason SA, Goldman PS, Migeon JC, Parenteau LA, Nathanson NM: Regulation of expression and function of muscarinic receptors. Life Sci 52: 429–432, 1993

    Article  PubMed  CAS  Google Scholar 

  17. Rademacher TW, Parekh RB, Dwek RA: Glycobiology. Annu Rev Biochem 57: 785–838, 1988

    Article  PubMed  CAS  Google Scholar 

  18. Halle W, Wollenberger A: Differentiation and behaviour of isolated embryonic and neonatal heart cells in a chemically defined medium. Am J Cardiol 25: 292–299, 1970

    Article  PubMed  CAS  Google Scholar 

  19. Wallukat G, Wollenberger A: Supersensitivity to β-adrenoeeptor stimulation evoked in cultured neonatal rat heart myocytes by L(+)-lactate and pyruvate. J Auton Pharmacol 13: 1–14, 1993

    Article  PubMed  CAS  Google Scholar 

  20. Canale ED, Campbell GR, Smolich JJ, Campbell JH: Cardiac muscle. Springer-Verlag, Berlin, pp 195–225, 1986

    Google Scholar 

  21. Haase H, Striessnig J, Holtzhauer M, Vetter R, Glossmann H: A rapid procedure for the purification of cardiac 1,4-dihydropyridine receptors from porcine heart. Eur J Pharmacol 207: 51–59, 1991

    Article  PubMed  CAS  Google Scholar 

  22. Haase H, Wallukat G, Vetter R, Will H: Characterization of calcium antagonist receptors in highly purified porcine cardiac sarcolemma. Biomed Biochim Acta 46: S363–9, 1987

    PubMed  CAS  Google Scholar 

  23. Henning U: Plaquebildung bei Mumps-Viren — Ein Beitrag zur biologischen Charakterisierung von attenuierten und Wild-Stämmen. [PhD Thesis]. Humboldt University Berlin, 1986

    Google Scholar 

  24. Gomez JP, Potreau D, Branka JE, Raymond G: Developmental changes in Ca2+ currents from newborn rat cardiomyocytes in primary culture. Pflugers Arch-Eur J Physiol 428: 241–249, 1994

    Article  CAS  Google Scholar 

  25. Elbein AD: Glycosidase inhibitors: inhibitors of N-linked oligosaccharide processing. FASEB J 5: 3055–3063, 1991

    PubMed  CAS  Google Scholar 

  26. Kobata A: Structures and functions of the sugar chains of glycoproteins. Eur J Biochem 209: 483–501, 1992

    Article  PubMed  CAS  Google Scholar 

  27. van den Eijnden DH, Joziasse DH: Enzymes associated with glycosylation. Curr Opin Struct Biol 3: 711–721, 1993

    Article  Google Scholar 

  28. Welling A, Bosse E, Cavalie A, Bottlender R, Ludwig A, Nastainczyk W, Flockerzi V, Hofmann F: Stable co-expression of calcium channel alpha(1), beta and alpha(2)/delta subunits in a somatic cell line. J Physiol-London 471: 749–765, 1993

    PubMed  CAS  Google Scholar 

  29. Wibo M, Bravo G, Godfraind T: Postnatal maturation of excitation-contraction coupling in rat ventricle in relation to the subcellular localization and surface density of 1,4-dihydropyridine and ryanodine receptors. Circ Res 68: 662–673, 1991

    PubMed  CAS  Google Scholar 

  30. Jorgensen AO, Shen ACY, Arnold W, Mcpherson PS, Campbell KP: The Ca2+-release channel/ryanodine receptor is localized in junctional and corbular sarcoplasmic reticulum in cardiac muscle. J Cell Biol 120:969–980, 1993

    Article  PubMed  CAS  Google Scholar 

  31. Morwinski R, Karsten U, Wallukat G: Mast cells detected in cultures of neonatai rat heart cells. Agents Action 41: C39–C40, 1994

    Article  Google Scholar 

  32. Page E, Earley J, Power B: Normal growth of ultrastructure in rat left ventricular myocardial cells. Circ Res 35: II–12–II–16, 1974

    Google Scholar 

  33. Hirakow R, Gotoh T, Watanabe T: Quantitative studies on the ultrastructural differentiation and growth of mammalian cardiac muscle cells. 1. The atria and ventricles of the rat. Acta anat 108: 144–152, 1980

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Henning, U., Wallukat, G., Holtzhauer, M. (1996). Influence of glycosylation inhibitors on dihydropyridine binding to cardiac cells. In: Krause, E.G., Vetter, R. (eds) Biochemical Mechanisms in Heart Function. Developments in Molecular and Cellular Biochemistry, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1279-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1279-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8546-5

  • Online ISBN: 978-1-4613-1279-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics