Influence of glycosylation inhibitors on dihydropyridine binding to cardiac cells

  • Ursula Henning
  • Gerd Wallukat
  • Martin Holtzhauer
Chapter
Part of the Developments in Molecular and Cellular Biochemistry book series (DMCB, volume 18)

Abstract

In primary cultures of neonatal rat heart cells we found a linear correlation between the number of L-type calcium channel-specific dihydropyridine (DHP) binding sites and spontaneous beating frequency (v).

Formation of glycoproteins in tissue culture was suppressed by different inhibitors of N-glycosylation. This inhibition alters to a different extent the binding of the DHP ligand (+)-[methyl-3H]PN 200-110 and v. The most severe but reversible effect occurs at 6 µ/ml tunicamycin (Bmax ≈ 45% and v ≈ 6%, resp., of control), a slight increase in Bmax at 0.1–0.5 mM castanospermine and 0.05–2.5 mM deoxymannojirimycin. The other inhibitors gave no significant alterations of Bmax. (Mol Cell Biochem 160/161:45–52, 1996)

Key words

calcium channel glycosylation inhibitor cultured cardiac cells dihydropyridine receptors glycoproteins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Glossmann H, Striessnig J: Molecular properties of calcium channels. Rev Physiol Biochem Pharmacol 114: 1–105, 1990PubMedCrossRefGoogle Scholar
  2. 2.
    Stem MD, Lakatta EG: Excitation-contraction coupling in the heart — The state of the question. FASEB J 6: 3092–3100, 1992Google Scholar
  3. 3.
    Hofmann F, Biel M, Flockerzi V: Molecular basis for Ca2+ channel diversity. Annu Rev Neurosci 17: 399–418, 1994PubMedCrossRefGoogle Scholar
  4. 4.
    Jorgensen AO, Shen AC, Arnold W, Leung AT, Campbell KP: Subcellular distribution of the 1,4-dihydropyridine receptor in rabbit skeletal muscle in situ: An immunofluorescence and immunocolloidal gold-labeling study. J Cell Biol 109: 135–147, 1989PubMedCrossRefGoogle Scholar
  5. 5.
    Striessnig J, Berger W, Glossmann H: Molecular properties of voltage-dependent Ca2+ channels in excitable tissues. Cell Physiol Biochem 3: 295–317, 1993CrossRefGoogle Scholar
  6. 6.
    Singer D, Biel M, Lotan I, Flockerzi V, Hofmann F, Dascal N: The roles of the subunits in the function of the calcium channel. Science 253: 1553–1557, 1991PubMedCrossRefGoogle Scholar
  7. 7.
    Hullin R, Biel M, Flockerzi V, Hofmann F: Tissue-specific expression of calcium channels. Trends Cardiovasc Med 3: 48–53, 1993PubMedCrossRefGoogle Scholar
  8. 8.
    Williams ME, Feldman DH, Mccue AF, Brenner R, Velicelebi G, Ellis SB, Harpold MM: Structure and functional expression of alpha1, alpha2 and beta subunits of a novel human neuronal calcium channel subtype. Neuron 8: 71–84, 1992PubMedCrossRefGoogle Scholar
  9. 9.
    Nargeot J, Dascal N, Lester HA: Heterologous expression of calcium channels. J Membr Biol 126: 97–108, 1992PubMedGoogle Scholar
  10. 10.
    Welling A, Kwan YW, Bosse E, Flockerzi V, Hofmann F, Kass RS: Subunit-dependent modulation of recombinant L-type calcium channels. Molecular basis for dihydropyridine tissue selectivity. Circ Res 73: 974–980, 1993PubMedGoogle Scholar
  11. 11.
    Kim H-L, Kim H, Lee P, King RG, Chin H: Rat brain expresses an alternative spliced form of the dihydropyridine-sensitive L-type calcium channel α2 subunit. Proc Natl Acad Sci USA 89: 3251–3255, 1992PubMedCrossRefGoogle Scholar
  12. 12.
    Burgess AJ, Norman RI: The large glycoprotein subunit of the skeletal muscle voltage-sensitive calcium channel. Deglycosylation and development. Eur J Biochem 178: 527–533, 1988PubMedCrossRefGoogle Scholar
  13. 13.
    Lis H, Sharon N: Protein glycosylation. Structural and functional aspects. Eur J Biochem 218: 1–27, 1993PubMedCrossRefGoogle Scholar
  14. 14.
    Stiles GL: Deglycosylated mammalian β2-adrenergic receptors: Effect on radioligand binding and peptide mapping. Arch Biochem Biophys 237:65–71, 1985PubMedCrossRefGoogle Scholar
  15. 15.
    Mitsuhashi M, Payan DG: Receptor glycosylation regulates the affinity of histamine H1 receptors during smooth muscle cell differentiation. Mol Pharmacol 35: 311–318, 1989PubMedGoogle Scholar
  16. 16.
    Habecker BA, Tietje KM, van Koppen CJ, Creason SA, Goldman PS, Migeon JC, Parenteau LA, Nathanson NM: Regulation of expression and function of muscarinic receptors. Life Sci 52: 429–432, 1993PubMedCrossRefGoogle Scholar
  17. 17.
    Rademacher TW, Parekh RB, Dwek RA: Glycobiology. Annu Rev Biochem 57: 785–838, 1988PubMedCrossRefGoogle Scholar
  18. 18.
    Halle W, Wollenberger A: Differentiation and behaviour of isolated embryonic and neonatal heart cells in a chemically defined medium. Am J Cardiol 25: 292–299, 1970PubMedCrossRefGoogle Scholar
  19. 19.
    Wallukat G, Wollenberger A: Supersensitivity to β-adrenoeeptor stimulation evoked in cultured neonatal rat heart myocytes by L(+)-lactate and pyruvate. J Auton Pharmacol 13: 1–14, 1993PubMedCrossRefGoogle Scholar
  20. 20.
    Canale ED, Campbell GR, Smolich JJ, Campbell JH: Cardiac muscle. Springer-Verlag, Berlin, pp 195–225, 1986Google Scholar
  21. 21.
    Haase H, Striessnig J, Holtzhauer M, Vetter R, Glossmann H: A rapid procedure for the purification of cardiac 1,4-dihydropyridine receptors from porcine heart. Eur J Pharmacol 207: 51–59, 1991PubMedCrossRefGoogle Scholar
  22. 22.
    Haase H, Wallukat G, Vetter R, Will H: Characterization of calcium antagonist receptors in highly purified porcine cardiac sarcolemma. Biomed Biochim Acta 46: S363–9, 1987PubMedGoogle Scholar
  23. 23.
    Henning U: Plaquebildung bei Mumps-Viren — Ein Beitrag zur biologischen Charakterisierung von attenuierten und Wild-Stämmen. [PhD Thesis]. Humboldt University Berlin, 1986Google Scholar
  24. 24.
    Gomez JP, Potreau D, Branka JE, Raymond G: Developmental changes in Ca2+ currents from newborn rat cardiomyocytes in primary culture. Pflugers Arch-Eur J Physiol 428: 241–249, 1994CrossRefGoogle Scholar
  25. 25.
    Elbein AD: Glycosidase inhibitors: inhibitors of N-linked oligosaccharide processing. FASEB J 5: 3055–3063, 1991PubMedGoogle Scholar
  26. 26.
    Kobata A: Structures and functions of the sugar chains of glycoproteins. Eur J Biochem 209: 483–501, 1992PubMedCrossRefGoogle Scholar
  27. 27.
    van den Eijnden DH, Joziasse DH: Enzymes associated with glycosylation. Curr Opin Struct Biol 3: 711–721, 1993CrossRefGoogle Scholar
  28. 28.
    Welling A, Bosse E, Cavalie A, Bottlender R, Ludwig A, Nastainczyk W, Flockerzi V, Hofmann F: Stable co-expression of calcium channel alpha(1), beta and alpha(2)/delta subunits in a somatic cell line. J Physiol-London 471: 749–765, 1993PubMedGoogle Scholar
  29. 29.
    Wibo M, Bravo G, Godfraind T: Postnatal maturation of excitation-contraction coupling in rat ventricle in relation to the subcellular localization and surface density of 1,4-dihydropyridine and ryanodine receptors. Circ Res 68: 662–673, 1991PubMedGoogle Scholar
  30. 30.
    Jorgensen AO, Shen ACY, Arnold W, Mcpherson PS, Campbell KP: The Ca2+-release channel/ryanodine receptor is localized in junctional and corbular sarcoplasmic reticulum in cardiac muscle. J Cell Biol 120:969–980, 1993PubMedCrossRefGoogle Scholar
  31. 31.
    Morwinski R, Karsten U, Wallukat G: Mast cells detected in cultures of neonatai rat heart cells. Agents Action 41: C39–C40, 1994CrossRefGoogle Scholar
  32. 32.
    Page E, Earley J, Power B: Normal growth of ultrastructure in rat left ventricular myocardial cells. Circ Res 35: II–12–II–16, 1974Google Scholar
  33. 33.
    Hirakow R, Gotoh T, Watanabe T: Quantitative studies on the ultrastructural differentiation and growth of mammalian cardiac muscle cells. 1. The atria and ventricles of the rat. Acta anat 108: 144–152, 1980PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Ursula Henning
    • 1
  • Gerd Wallukat
    • 2
  • Martin Holtzhauer
    • 1
  1. 1.Institute of Biochemistry and Molecular PhysiologyUniversity of PotsdamBerlinGermany
  2. 2.Department of Molecular CardiologyMax Delbrück Center for Molecular MedicineBerlinGermany

Personalised recommendations