Skip to main content

P-Glycoprotein-Mediated Multidrug Resistance: Experimental and Clinical Strategies for its Reversal

  • Chapter
Drug Resistance

Part of the book series: Cancer Treatment and Research ((CTAR,volume 87))

Abstract

Clinical drug resistance to chemo therapeutic agents is a major obstacle for their curative potential in the treatment of human cancers. Multidrug resistance (MDR) is an important mechanism of cellular resistance to the cytotoxic activity of certain chemotherapeutic agents. Tumor cells selected for the MDR phenotype overexpress the mdr1 gene product, P-glycoprotein (P-gp), a membrane-bound drug efflux pump that confers resistance to a broad range of commonly used chemotherapeutic drugs and other agents. Numerous compounds have been identified that inhibit the efflux activity of P-gp, and reverse cellular resistance to cytotoxic agents in experimental systems [1]. This suggests that clinical drug resistance in human tumors, which often overexpress P-gp, may be potentially overcome through the concomitant administration to patients of a P-gp inhibitor with chemotherapeutic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ford JM, Hait WN (1990) Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev 42:156–199.

    Google Scholar 

  2. Biedler JL, Richm H (1970) Cellular resistance to actinomycin D in Chinese hamster cells in vitro: Cross-resistance, radioautographic and cytogenetic studies. Cancer Res 30:1174–1184.

    PubMed  CAS  Google Scholar 

  3. Dano K (1973) Active outward transport of daunomycin in resistant Ehrlich ascites tumour cells. Biochim Biophys Acta 323:466–483.

    Article  PubMed  CAS  Google Scholar 

  4. Pastan I, Gottesman MM (1987) Multiple-drug resistance in human cancer. N Engl J Med 316:1388–1393.

    Article  PubMed  CAS  Google Scholar 

  5. Moscow JA, Cowan KH (1988) Multidrug Resistance. J Natl Cancer Inst 80:14–20.

    Article  PubMed  CAS  Google Scholar 

  6. Ford JM, Hait WN (1993) Pharmacologic circumvention of multidrug resistance. Cytotechnology 12:171–212.

    Article  PubMed  CAS  Google Scholar 

  7. Clynes M (ed.) (1993) Multiple Drug Resistance in Cancer: Cellular, Molecular and Clinical Approaches. Dordrecht: Kluwer Academic Press, 396 pp.

    Google Scholar 

  8. Fisher GA, Sikic BI (eds.) (1995) Drug resistance in clinical oncology and hematology. In Hematology/Oncology Clinics of North America, Vol. 9, Philadelphia: WB Saunders, 511pp.

    Google Scholar 

  9. Yeh GC, Lopaczynska J, Poore CM, Phang JM (1992) A new functional role for P-glycoprotein: Efflux pump for benzo(a)pyrene in human breast cancer MCF-7 cells. Cancer Res 52:6692–6695.

    PubMed  CAS  Google Scholar 

  10. Ueda K, Okamura N, Hirai M, Tanigawara Y, Saeki T, Kioka N, Komano T, Hori R (1992) Human P-glycoprotein transports Cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem 267:24248–24252.

    PubMed  CAS  Google Scholar 

  11. Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455:152–162.

    Article  PubMed  CAS  Google Scholar 

  12. Skovsgaard T (1978) Mechanisms of resistance to daunorubicin in Ehrlich ascites tumour cells. Cancer Res 38:1785–1791.

    PubMed  CAS  Google Scholar 

  13. Kartner N, Riordan JR, Ling V (1983) Cell surface P-glycoprotein is associated with multidrug resistance in mammalian cell lines. Science 221:1285–1288.

    Article  PubMed  CAS  Google Scholar 

  14. Gerlach JH, Kartner N, Bell DR, Ling V (1986) Multidrug resistance. Cancer Surv 5:25–46.

    PubMed  CAS  Google Scholar 

  15. Gros P, Neriah BY, Croop JM, Housman DE (1986) Isolation and expression of a complementary DNA that confers multidrug resistance. Nature 323:728–731.

    Article  PubMed  CAS  Google Scholar 

  16. Ueda K, Cardarelli C, Gottesman MM, Pastan I (1987) Expression of a full-length cDNA for the human mdr1 gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci USA 84:3004–3008.

    Article  PubMed  CAS  Google Scholar 

  17. Hammond JR, Johnstone RM, Gros P (1989) Enhanced efflux of [3H]vinblastine from Chinese hamster ovary cells transfected with a full-length complementary DNA clone for the mdr1 gene. Cancer Res 49:3867–3871.

    PubMed  CAS  Google Scholar 

  18. Bibi E, Gros P, Kaback HR (1993) Functional expression of mouse mdr1 in Escherichia coli. Proc Natl Acad Sci USA 90:9209–9213.

    Article  PubMed  CAS  Google Scholar 

  19. Ruetz S, Raymond M, Gros P (1993) Functional expression of p-glycoprotein encoded by the mouse mdr3 gene in yeast cells. Proc Natl Acad Sci USA 90:11588–11592.

    Article  PubMed  CAS  Google Scholar 

  20. Raymond M, Ruetz S, Thomas DY, Gros P (1994) Functional expression of P-glycoprotein in Saccharomyces cerevisiae confers cellular resistance to tahe immunosuppressive and antifungal agent FK520. Mol Cell Biol 14:277–286.

    PubMed  CAS  Google Scholar 

  21. Ruetz S, Gros P (1994) Functional expression of P-glycoproteins in secretory vesicles. J Biol Chem 269:12277–12284.

    PubMed  CAS  Google Scholar 

  22. Gros P, Croop J, Housman D (1986) Mammalian multidrug resistance gene: Complete cDNA sequence indicates strong homology to bacterial transport proteins. Cell 47:371–380.

    Article  PubMed  CAS  Google Scholar 

  23. Chen CJ, Chin E, Ueda K, Clark CP, Pastan I, Gottesman MM, Roninson IB (1986) Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug resistant human cells. Cell 47:381–389.

    Article  PubMed  CAS  Google Scholar 

  24. Gros P, Shustik C (1991) Multidrug resistance: A novel class of membrane-associated transport proteins is identified. Cancer Invest 9:563–569.

    Article  PubMed  CAS  Google Scholar 

  25. Sharom FJ, Yu X, Doige CA (1993) Functional reconstitution of drug transport and ATPase activity in proteoliposomes containing partially purified P-glycoprotein. J Biol Chem 268:24197–24202.

    PubMed  CAS  Google Scholar 

  26. Shapiro AB, Ling V (1994) ATPase activity of purified and reconstituted P-glycoprotein from Chinese hamster ovary cells. J Biol Chem 269:3745–3754.

    PubMed  CAS  Google Scholar 

  27. Cornwell MM, Pastan I, Gottesman MM (1987) Certain calcium channel blockers bind specifically to multidrug resistant human KB carcinoma membrane vesicles and inhibit drug binding to P-glycoprotein. J Biol Chem 262:2166–2170.

    PubMed  CAS  Google Scholar 

  28. Loo TW, Clarke DM (1994) Functional consequences of glycine mutations in the predicted cytoplasmic loops of P-glycoprotein. J Biol Chem 269:7243–7248.

    PubMed  CAS  Google Scholar 

  29. Loo TW, Clarke DM (1994) Functional consequences of phenylalanine mutations in the predicted transmembrane domains of P-glycoprotein. J Biol Chem 268:19965–19972.

    Google Scholar 

  30. Morris DI, Greenberger LM, Bruggemann EP, Cardarelli C, Gottesman MM, Pastan I, Seamon KB (1994) Localization of the forskolin labeling sites to both halves of P-glycoprotein: Similarity of the sites labeled by forskolin and prazosin. Mol Pharmocol 46:329–337.

    CAS  Google Scholar 

  31. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y (1981) Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res 41:1967–1972.

    PubMed  CAS  Google Scholar 

  32. Naito M, Tsuruo T (1989) Competitive inhibition by verapamil of ATP-dependent high affinity vincristine binding to the plasma membrane of multidrug-resistant K562 cells without calcium ion involvement. Cancer Res 49:1452–1455.

    PubMed  CAS  Google Scholar 

  33. Safa AR, Glover CJ, Sewell JL, Meyers MB, Biedler JL, Felsted RL (1987) Identification of the multidrug resistance-related membrane glycoprotein as an acceptor for calcium channel blockers. J Biol Chem 262:7884–7888.

    PubMed  CAS  Google Scholar 

  34. Safa AR (1988) Photoaffinity labeling of the multidrug-resistance-related P-glycoprotein with photoactive analogs of verapamil. Proc Natl Acad Sci USA 85:7187–7191.

    Article  PubMed  CAS  Google Scholar 

  35. Safa AR (1988) Inhibition of azidopine binding to the multidrug resistance related gp 150–180 (P-glycoprotein) by modulators of multidrug resistance. Proc Am Assoc Cancer Res 29:1160.

    Google Scholar 

  36. Yang CH, Mellado W, Horwitz SB (1988) Azidopine photoaffinity labeling of multidrug resistance-associated glycoproteins. Biochem Pharmacol 37:1417–1421.

    Article  PubMed  CAS  Google Scholar 

  37. Ford JM, Bruggeman E, Pastan I, Gottesman MM, Hait WN (1990) Cellular and biochemical characterization of thioxanthenes for reversal of multidrug resistance in human and murine cell lines. Cancer Res 50:1748–1756.

    PubMed  CAS  Google Scholar 

  38. Kajiji S, Dreslin JA, Grizzuti K, Gros P (1994) Structurally distinct MDR modulators show specific patterns of reversal against P-glycoproteins bearing unique mutations at serine939/941. Biochemistry 33:5041–5048.

    Article  PubMed  CAS  Google Scholar 

  39. Cardarelli CO, Aksentijevich I, Pastan I, Gottesman MM (1995) Differential effects of P-glycoprotein inhibitors on NIH3T3 cells transfected with wild-type (G185) or mutant (V185) multidrug transporters. Cancer Res 55:1086–1091.

    PubMed  CAS  Google Scholar 

  40. Bruggemann EP, Currier SJ, Gottesman MM, Pastan I (1992) Characterization of the azidopine and vinblastine binding site of P-glycoprotein. J Biol Chem 267:21020–21026.

    PubMed  CAS  Google Scholar 

  41. Yusa K, Tsuruo T (1989) Reversal mechanism of multidrug resistance by verapamil: Direct binding of verapamil to P-glycoprotein on specific sites and transport of verapamil outward across the plasma membrane of K562/ADM cells. Cancer Res 49:5002–5006.

    PubMed  CAS  Google Scholar 

  42. Tamai I, Safa A (1991) Azidopine noncompetitively interacts with vinblastine and cyclosporin A binding to P-glycoprotein in multidrug resistant cells. J Biol Chem 266:16796–16800.

    PubMed  CAS  Google Scholar 

  43. Aftab DT, Yang JM, Hait WN (1994) Functional role of phosphorylation of the multidrug transporter (P-glycoprotein) by protein kinase C in multidrug resistant MCF-7 cells. Oncol Res 6:59–70.

    PubMed  CAS  Google Scholar 

  44. Aftab DT, Bailas LM, Loomis CR, Hait WN (1991) Structure-activity relationships of phenothi-azines and related drugs for inhibition of protein kinase C. Mol Pharmacol 40:798–805.

    PubMed  CAS  Google Scholar 

  45. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y (1982) Increased accumulation of vincristine and Adriamycin in drug-resistant P388 tumor cells following incubation with calcium antagonists and calmodulin inhibitors. Cancer Res 42:4730–4733.

    PubMed  CAS  Google Scholar 

  46. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y (1983) Potentiation of vincristine and Adriamycin in human hematopoietic tumor cell lines by calcium antagonists and calmodulin inhibitors. Cancer Res 43:2267–2272.

    PubMed  CAS  Google Scholar 

  47. Akiyama S, Cornwell MM, Kuwano M, Pastan I, Gottesman MM (1988) Most drugs that reverse multidrug resistance inhibit photoaffinity labeling of P-glycoprotein by a vinblastine analog. Mol Pharmacol 33:144–147.

    PubMed  CAS  Google Scholar 

  48. Ozols RF, Cunnion RE, Klecker RW, Hamilton TC, Ostchega Y, Parrillo JE, Young RC (1987) Verapamil and Adriamycin in the treatment of drug-resistant ovarian cancer patients. J Clin Oncol 5:641–647.

    PubMed  CAS  Google Scholar 

  49. Kessel D, Wilberding C (1985) Promotion of daunorubicin uptake and toxicity by the calcium antagonist tiapamil and its analogs. Cancer Treat Rep 69:673–676.

    PubMed  CAS  Google Scholar 

  50. Plumb JA, Wishart GC, Setanoians A, Morrison JG, Hamilton T, Bicknell SR, Kaye SB (1994) Identification of a multidrug resistance modulator with clinical potential by analysis of synergistic activity in vitro, toxicity in vivo and growth delay in a solid human tumor xenograft. Biochem Pharmacol 47:257–266.

    Article  PubMed  CAS  Google Scholar 

  51. Tsuruo T, Iida H, Nojiri M, Tsukagoshi S, Sakurai Y (1983) Circumvention of vincristine and Adriamycin resistance in vitro and in vivo by calcium influx blockers. Cancer Res 43:2905–2910.

    PubMed  CAS  Google Scholar 

  52. Ramu A, Spanier R, Rahamimoff H, Fuks Z (1984) Restoration of doxorubicin responsiveness in doxorubicin-resistant P388 murine leukaemia cells. Br J Cancer 50:501–507.

    Article  PubMed  CAS  Google Scholar 

  53. Tsuruo T, Kawabata H, Nagumo N, Iida H, Kitatani Y, Tsukagoshi S, Sakurai Y (1985) Potentiation of antitumor agents by calcium channel blockers with special reference to cross-resistance patterns. Cancer Chemother. Pharmacol 15:16–19.

    Article  PubMed  CAS  Google Scholar 

  54. Niwa K, Yamada K, Furukawa T, Shudo N, Seto K, Matsumoto T, Takao S, Akiyama S, Shimazu H (1992) Effect of a dihydropyridine analogue, 2-[benzyl(phenyl)amino]ethyl-1,4-dihydro-2,6-dimethyl-5-(5,5-dimethyl-2-oxo-1,3,2-dioxaphosphorinan-2-yl)-1-(2-morpholino-ethyl)-4-(3-nitrophenyl)-3-pyridinecarboxylate on reversing in vivo resistance of tumor cells to adriamycin. Cancer Res 52:3655–3660.

    PubMed  CAS  Google Scholar 

  55. Weir MR, Peppier R, Gomolka D, Handwerger BS (1992) Evidence that the antiproliferative effect of verapamil on afferent and efferent immune responses is independent of calcium channel inhibition. Transplantation 54:681–685.

    Article  PubMed  CAS  Google Scholar 

  56. Gruber A, Peterson C, Reizenstein P (1988) D-verapamil and L-verapamil are equally effective in increasing vincristine accumulation in leukemic cells in vitro. Int J Cancer 41:224–226.

    Article  PubMed  CAS  Google Scholar 

  57. Plumb JA, Milroy R, Kaye SB (1990) The activity of verapamil as a resistance modifier in vitro in drug resistant human tumor cell lines is not stereospecific. Biochem Pharmacol 39:787–792.

    Article  PubMed  CAS  Google Scholar 

  58. Hollt V, Kouba M, Dietel M, Vogt G (1992) Stereoisomers of calcium antagonists which differ markedly in their potencies as calcium blockers are equally effective in modulating drug transport by P-glycoprotein. Biochem Pharmacol 43:2601–2608.

    Article  PubMed  CAS  Google Scholar 

  59. Wilson WH, Bates S, Kang YK, Fojo A, Bryant G, Wittes R, Stevenson MA, Steinberg S, Chabner B A (1993) Reversal of multidrug resistance with R-verapamil and analysis of mdr-1 expression in patients with lymphoma refractory to EPOCH chemotherapy. Proc Am Assoc Cancer Res 34:1266.

    Google Scholar 

  60. Ganapathi R, Grabowski D, Rouse W, Riegler F (1984) Differential effect of the calmodulin inhibitor trifluoperazine on cellular accumulation, retention, and cytotoxicity of anthracyclines in doxorubicin (Adriamycin)-resistant P388 mouse leukemia cells. Cancer Res 44:5056–5061.

    PubMed  CAS  Google Scholar 

  61. Ganapathi R, Grabowski D, Schmidt H (1986) Factors governing the modulation of vinca-alkaloid resistance in doxorubicin-resistant cells by the calmodulin inhibitor trifluoperazine. Biochem Pharmacol 35:673–678.

    Article  PubMed  CAS  Google Scholar 

  62. Ford JM, Prozialeck WC, Hait WN (1989) Structural features determining activity of phenothiaz-ines and related drugs for inhibition of cell growth and reversal of multidrug resistance. Mol Pharmacol 35:105–115.

    PubMed  CAS  Google Scholar 

  63. Johnstone EC, Crow TJ, Frith CD, Carney MWD, Price JS (1978) Mechanism of the antipsychotic effect in the treatment of acute schizophrenia. Lancet 1:848–851.

    Article  PubMed  CAS  Google Scholar 

  64. Post ML, Kennard U, Horn AS (1975) Stereoselective blockade of the dopamine receptor and the X-ray structures of alpha and beta-flupenthixol. Nature 256:342–343.

    Article  PubMed  CAS  Google Scholar 

  65. Huff RM, Molinoff B (1984) Assay of dopamine receptors with [α-3H] flupenthixol. J Pharmacol Exp Ther 232:57–61.

    Google Scholar 

  66. Nielsen IM, Pedersen V, Nymark M, Franch KF, Boeck V, Fjalland B, Christensen AV (1973) Comparative pharmacology of flupenthixol and some reference neuroleptics. Acta Pharmacol Toxicol (Copenh) 33:353–362.

    Article  CAS  Google Scholar 

  67. Twentyman PR, Fox NE, White DJG (1987) Cyclosporin A and its analogues as modifiers of Adriamycin and vincristine resistance in a multi-drug resistant human lung cancer cell line. Br J Cancer 56:55–57.

    Article  PubMed  CAS  Google Scholar 

  68. Hait WN, Stein JM, Koletsky AJ, Harding MW, Handschumacher RE (1989) Activity of cyclosporin A and a non-immunosuppressive cyclosporin on multidrug resistant leukemic cell lines. Cancer Commun 1:35–43.

    PubMed  CAS  Google Scholar 

  69. Slater LM, Sweet P, Stupecky M, Wetzel MW, Gupta S (1986) Cyclosporin A corrects daunorubicin resistance in Ehrlich ascites carcinoma. Br J Cancer 54:235–238.

    Article  PubMed  CAS  Google Scholar 

  70. Osieka R, Seeber S, Pannenbacker R, Soil D, Glatte P, Schmidt CG (1986) Enhancement of etoposide-induced cytotoxicity by cyclosporin A. Cancer Chemother Pharmacol 18:198–202.

    Article  PubMed  CAS  Google Scholar 

  71. Chambers SK, Hait WN, Kacinski BM, Keyes SR, Handschumacher RE (1989) Enhancement of anthracycline growth inhibition in parent and multidrug-resistant Chinese hamster ovary cells by cyclosporin A and its analogues. Cancer Res 49:6275–6279.

    PubMed  CAS  Google Scholar 

  72. Gaveriaux C, Boesch D, Boilsterli JJ, Bollinger P, Eberle MK, Hiestand P, Payne T, Traber R, Wenger R, Loor F (1989) Overcoming multidrug resistance in Chinese hamster ovary cells in vitro by cyclosporin A (Sandimmune) and non-immunosuppressive derivatives. Br J Cancer 60:867–871.

    Article  PubMed  CAS  Google Scholar 

  73. Silbermann MH, Boersma AWM, Janssen ALW, Scheper RJ, Herweijer H, Nooter K (1989) Effects of cyclosporin A and verapamil on the intracellular daunorubicin accumulation in Chinese hamster ovary cells with increasing levels of drug-resistance. Int J Cancer 44:722–726.

    Article  PubMed  CAS  Google Scholar 

  74. Goldberg H, Ling V, Wong PY, Skorecki K (1988) Reduced cyclosporin accumulation in multidrug-resistant cells. Biochem Biophys Res Commun 152:552–558.

    Article  PubMed  CAS  Google Scholar 

  75. Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T (1993) Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem 268:6077–6080.

    PubMed  CAS  Google Scholar 

  76. Boesch D, Muller K, Pourtier-Manzanedo A, Loor F (1991) Restoration of daunomycin retention in multidrug-resistant P388 cells by submicromolar concentrations of SDZ PSC 833, a nonimmunosuppressive cyclosporin derivative. Exp Cell Res 196:26–32.

    Article  PubMed  CAS  Google Scholar 

  77. Jachez B, Nordmann R, Loor F (1993) Restoration of taxol sensitivity of multidrug-resistant cells by the cyclosporine SDZ PSC 833 and the cyclopeptolide SDZ 280–446. J Natl Cancer Inst 85:478–483.

    Article  PubMed  CAS  Google Scholar 

  78. Loor F, Boesch D, Gaveriaux C, Jachez B, Dourtier-Manzanedo A, Emmer G (1992) SDZ 280–446, a novel semisynthetic cyclopeptide: In vitro and in vivo circumvention of P-glycoprotein mediated tumor cell multidrug resistance. Br J Cancer 65:11–18.

    Article  PubMed  CAS  Google Scholar 

  79. Arceci RJ, Croop JM, Horwitz SB, Housman D (1988) The gene encoding multidrug resistance is induced and expressed at high levels during pregnancy in the secretory epithelium of the uterus. Proc Natl Acad Sci USA 85:4350–4354.

    Article  PubMed  CAS  Google Scholar 

  80. Yang CPH, DePinho SH, Greenberger LM, Arceci RJ, Horwitz SB (1989) Progesterone interacts with P-glycoprotein in multidrug-resistant cells and in the endometrium of gravid uterus. J Biol Chem 264:782–788.

    PubMed  CAS  Google Scholar 

  81. Yang CPH, Cohen D, Greenberger LM, Hsu SH, Horwitz SB (1990) Differential transport properties of two mdr gene products are distinguished by progesterone. J Biol Chem 265:10282–10288.

    PubMed  CAS  Google Scholar 

  82. Naito M, Yusa K, Tsurou T (1989) Steroid hormones inhibit binding of Vinca alkaloid to multidrug resistance related P-glycoprotein. Biochem Biophys Res Commun 158:1066–1071.

    Article  PubMed  CAS  Google Scholar 

  83. Fleming GF, Amato JM, Agresti M, Safa AR (1992) Megestrol acetate reverses multidrug resistance and interacts with P-glycoprotein. Cancer Chemother Pharmacol 29:445–449.

    Article  PubMed  CAS  Google Scholar 

  84. Aisner J, Tchekmedyian NS, Tait N, Parnes H, Novak M (1988) Studies of high-dose megestrol acetate: Potential applications in cachexia. Semin Oncol 15S:68–75.

    Google Scholar 

  85. Ramu A, Glaubiger D, Fuks Z (1984) Reversal of acquired resistance to doxorubicin in P388 murine leukemia cells by tamoxifen and other triparanol analogues. Cancer Res 44:4392–4395.

    PubMed  CAS  Google Scholar 

  86. Foster BJ, Grotzinger KR, McKoy WM, Rubinstein LV, Hamilton TC (1988) Modulation of induced resistance to Adriamycin in two human breast cancer cell lines with tamoxifen or perhexiline maleate. Cancer Chemother Pharmacol 22:147–152.

    Article  PubMed  CAS  Google Scholar 

  87. DeGregorio MW, Ford JM, Benz CC, Wiebe VJ (1989) Toremifene: Pharmacologic and pharmacokinetic basis of reversing multidrug resistance. J Clin Oncol 7:1359–1364.

    PubMed  CAS  Google Scholar 

  88. Chatterjee M, Harris A (1990) Enhancement of adriamycin cytotoxicity in a multidrug resistant Chinese hamster ovary (CHO) subline, CHO-Adrr, by toremifene and its modulation by alpha 1 acid glycoprotein. Eur J Cancer 26:432–436.

    Article  PubMed  CAS  Google Scholar 

  89. Kirk J, Houlbrook S, Stuart NSA, Stratford IJ, Harris AL, Carmichael J (1993) Differential modulation of doxorubicin toxicity to multidrug and intrinsically drug resistant cell lines by anti-oestrogens and their major metabolites. Br J Cancer 67:1189–1195.

    Article  PubMed  CAS  Google Scholar 

  90. Leonessa F, Jacobson M, Boyle B, Lippman J, McGarvey M, Clarke R (1994) Effect of tamoxifen on the multidrug-resistant phenotype in human breast cancer cells: Isobologram, drug accumulation, and Mr 170,000 glycoprotein binding studies. Cancer Res 54:441–447.

    PubMed  CAS  Google Scholar 

  91. Callaghan R, Higgins CF (1995) Interaction of tamoxifen with the multidrug resistance P-glycoprotein. Br J Cancer 71:294–299.

    Article  PubMed  CAS  Google Scholar 

  92. Jordan VC, Bain RR, Brown RR, Gosden B, Santos MA (1983) Determination and pharmacology of a new hydroxylated metabolite of tamoxifen observed in patient sera during therapy for advanced breast cancer. Cancer Res 43:1446–1450.

    PubMed  CAS  Google Scholar 

  93. Nelson JA, Drake S (1984) Potentiation of methotrexate toxicity by dipyridamole. Cancer Res 44:2493–2496.

    PubMed  CAS  Google Scholar 

  94. Grem JL, Fischer PH (1985) Augmentation of 5-flourouracil cytotoxicity in human colon cancer cells by dipyridamole. Cancer Res 45:2967–2972.

    PubMed  CAS  Google Scholar 

  95. Jekunen A, Vick J, Sanga R, Chan TCK, Howell SB (1992) Synergism between dipyridamole and cisplatin in human ovarian carcinoma cells in vitro. Cancer Res 52:3566–3571.

    PubMed  CAS  Google Scholar 

  96. Howell SB, Horn D, Sanga R, Vick JS, Abramson IS (1989) Comparison of the synergistic potentiation of etoposide, doxorubicin and vinblastine cytotoxicity by dipyridamole. Cancer Res 49:3178–3183.

    PubMed  CAS  Google Scholar 

  97. Howell SB, Horn DK, Sanga R, Vick JS, Chan TCK (1989) Dipyridamole enhancement of etoposide sensitivity. Cancer Res 49:4147–4153.

    PubMed  CAS  Google Scholar 

  98. Chen HX, Bamberger U, Heckel A, Guo X, Cheng YC (1993) BIBW 22, a dipyridamole analogue, acts as a bifunctional modulator on tumor cells by influencing both P-glycoprotein and nucleoside transport. Cancer Res 53:1974–1977.

    PubMed  CAS  Google Scholar 

  99. Chauffert B, Martin M, Hammann A, Michel MF, Martin F (1986) Amiodarone-induced enhancement of doxorubicin and 4’-deoxydoxorubicin cytotoxicity to rat colon cancer cells in vitro and in vivo. Cancer Res 46:825–830.

    PubMed  CAS  Google Scholar 

  100. Tsuruo T, Iida H, Kitatani Y, Yokota K, Tsukagoshi S, Yakurai Y (1984) Effects of quinidine and related compounds on cytotoxicity and cellular accumulation of vincristine and Adriamycin in drug-resistant tumor cells. Cancer Res 44:4303–4307.

    PubMed  CAS  Google Scholar 

  101. Zamora JM, Pearce HL, Beck WT (1988) Physical-chemical properties shared by compounds that modulate multidrug resistance in human leukemic cells. Mol Pharmacol 33:454–462.

    PubMed  CAS  Google Scholar 

  102. Beck WT, Cirtain MC, Glover CJ, Felsted RL, Safa AR (1988) Effects of indole alkaloids on multidrug resistance and labeling of P-glycoprotein by a photoaffinity analog of vinblastine. Biochem Biophys Res Comm 153:959–966.

    Article  PubMed  CAS  Google Scholar 

  103. Pearce HL, Safa AR, Bach NJ, Winter MA, Cirtain MC, Beck WT (1989) Essential features of the P-glycoprotein pharmacophore as defined by a series of reserpine analogs that modulate multidrug resistance. Proc Natl Acad Sci USA 86:5128–5132.

    Article  PubMed  CAS  Google Scholar 

  104. Hait WN, Gesmonde JF, Murren JR, Yang JM, Chen HX, Reiss M (1993) Terfenadine (Seidane): A new drug for restoring sensitivity to multidrug resistant cancer cells. Biochem Pharmacol 45:401–406.

    Article  PubMed  CAS  Google Scholar 

  105. Hyafil F, Vergely C, Du Vignaud P, Grand-Perret T (1993) In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res 53:4595–4602.

    PubMed  CAS  Google Scholar 

  106. Pierre A, Dunn TA, Kraus-Berthier L, Leonce S, Saint-Dizier D, Regnier G, Dhainaut A, Berlion M, Bizzari JP, Atassi G (1992) In vitro and in vivo circumvention of multidrug resistance by Servier 9788, a novel triazinoaminopiperidine derivative. Invest New Drugs 10:137–148.

    Article  PubMed  CAS  Google Scholar 

  107. Merlin JL, Guerci A, Marchai S, Missoum N, Ramacci C, Humbert JC, Tsuruo T, Guerci O (1994) Comparaitive evaluation of S9788, verapamil, and cyclosporine A in K562 human leukemia cell lines and in P-glycoprotein-expressing samples from patients with hematologic malignancies. blood 84:262–269.

    PubMed  CAS  Google Scholar 

  108. Smith CD, Carmeli S, Moore RE, Patterson GML (1993) Scytophycins, novel microfilament-depolymerizing agents which circumvent P-glycoprotein-mediated multidrug resistance. Cancer Res 53:1343–1347.

    PubMed  CAS  Google Scholar 

  109. Smith CD, Zhang X, Mooberry SL, Patterson GML, Moore RE (1994) Cryptophycin: A new antimicrotubule agent active against drug-resistant cells. Cancer Res 54:3779–3784.

    PubMed  CAS  Google Scholar 

  110. Smith CD, Prinsep MR, Caplan FR, Moore RE, Patterson GM (1994) Reversal of multiple drug resistance by tolyporphin, a novel cyanobacterial natural product. Oncol Res 6:211–218.

    PubMed  CAS  Google Scholar 

  111. Ramu A., Ramu N (1992) Reversal of multidrug resistance by phenothiazines and structurally related compounds. Cancer Chemother Pharmacol 30:165–173.

    Article  PubMed  CAS  Google Scholar 

  112. Ramu A, Ramu N (1994) Reversal of multidrug resistance by bis(phenylalkyl) amines and structurally related compounds. Cancer Chemother Pharmacol 34:423–430.

    Article  PubMed  CAS  Google Scholar 

  113. Klopman G, Srivastava S, Kolossvary I, Epand RF, Ahmed N, Epand RM (1992) Structure-activity study and design of multidrug-resistant reversal compounds by a computer automated structure evaluation methodology. Cancer Res 52:4121–4129.

    PubMed  CAS  Google Scholar 

  114. Prozialeck WC, Weiss B (1982) Inhibition of calmodulin by phenothiazines and related drugs: Structure-activity relationships. J Pharmacol Exp Ther 222:509–516.

    PubMed  CAS  Google Scholar 

  115. Hait WN, Aftab DT (1992) Rational design and pre-clinical pharmacology of drugs for reversing multidrug resistance. Biochem Pharmacol 43:103–107.

    Article  PubMed  CAS  Google Scholar 

  116. Reid RE (1983) Drug interactions with calmodulin: The binding site. J Theor Biol 105:63–76.

    Article  PubMed  CAS  Google Scholar 

  117. Bruggemann EP, Germann UA, Gottesman MM, Pastan I (1989) Two different regions of phosphoglycoprotein are photoaffinity-labeled by azidopine. J Biol Chem 264:15483–15488.

    PubMed  Google Scholar 

  118. Hu XF, Martin TJ, Bell DR, Luise M, Zalcberg, JR (1990) Combined use of cyclosporin A and verapamil in modulating multidrug resistance in human leukemia cell lines. Cancer Res 50:2953–2957.

    PubMed  CAS  Google Scholar 

  119. Osann K, Sweet P, Slater LM (1992) Synergistic interaction of cyclosporin A and verapamil on vincristine and daunorubicin resistance in multidrug-resistant human leukemia cells in vitro. Cancer Chemother Pharmacol 30:152–154.

    Article  PubMed  CAS  Google Scholar 

  120. Carlsen SA, Till JE, Ling V (1977) Modulation of drug permeability in Chinese hamster ovary cells—possible role for phosphorylation of surface glycoproteins. Biochim Biophys Acta 467:238–250.

    Article  PubMed  CAS  Google Scholar 

  121. Center MS (1983) Evidence that Adriamycin resistance in Chinese hamster lung cells is regulated by phosphorylation of a plasma membrane glycoprotein. Biochem Biophys Res Commun 115:159–166.

    Article  PubMed  CAS  Google Scholar 

  122. Hamada H, Hagiwara K-I, Nakajima T, Tsuruo T (1987) Phosphorylation of the Mr 170,000 to 180,000 glycoprotein specific to multidrug-resistant tumor cells: Effects of verapamil, trifluoperazine, and phorbol esters. Cancer Res 47:2860–2865.

    PubMed  CAS  Google Scholar 

  123. Fine RL, Patel JA, Chabner BA (1988) Phorbol esters induce multidrug resistance in human breast cancer cells. Proc Natl Acad Sci USA 85:582–586.

    Article  PubMed  CAS  Google Scholar 

  124. Ma L, Marquardt D, Takemoto L, Center MS (1991) Analysis of P-glycoprotein phosphorylation in HL-60 cells isolated for resistance to vincristine. J Biol Chem 266:5593–5599.

    PubMed  CAS  Google Scholar 

  125. Meyers MB (1989) Protein phosphorylation in multidrug resistant Chinese hamster cells. Cancer Commun 1:233–241.

    PubMed  CAS  Google Scholar 

  126. Mellado W, Horwitz SB (1987) Phosphorylation of the multi-drug resistance associated glycoprotein. Biochemistry 26:6900–6904.

    Article  PubMed  CAS  Google Scholar 

  127. Center MC (1985) Mechanisms regulating cell resistance to Adriamycin—evidence that drug accumulation in resistant cells is modulated by phosphorylation of a plasma membrane glycoprotein. Biochem Pharmacol 34:1471–1476.

    Article  PubMed  CAS  Google Scholar 

  128. Kemp BE, Pearson RB (1990) Protein kinase recognition sequence motifs. Trends Biochem Sci 15:342–346.

    Article  PubMed  CAS  Google Scholar 

  129. Kennelly PJ, Krebs EG (1991) Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J Biol Chem 266:15555–15558.

    PubMed  CAS  Google Scholar 

  130. Orr GA, Han EK, Browne PC, Nieves E, O’Connor BM, Yang CP, Horwitz SB (1993) Identification of the major phosphorylation domain of murine mdr1b P-glycoprotein: Analysis of the protein kinase A and protein kinase C phosphorylation sites. J Biol Chem 268:25054–25062.

    PubMed  CAS  Google Scholar 

  131. Chambers TC, Pohl J, Raynor RL, Kuo JF (1993) Identification of specific sites in human P-glycoprotein phophoyrlated by protein kinase C. J Biol Chem 268:4592–4595.

    PubMed  CAS  Google Scholar 

  132. Chambers TC, McAvoy EM, Jacobs JW, Eilon G (1990) Protein kinase C phosphorylates P-glycoprotein in multidrug resistant human KB carcinoma cells. J Biol Chem 265:7679–7686.

    PubMed  CAS  Google Scholar 

  133. Aftab DT, Hait WN (1992) Effects of phorbol 12-myristate 13-acetate on drug accumulation and P-glycoprotein phosphorylation in sensitive and multidrug resistant MCF-7 cells. Proc Am Assoc Cancer Res 33:2821.

    Google Scholar 

  134. Yang JM, Chin KY, Hait WN (1996) Interaction of P-glycoprotein with protein kinase C in human multidrug resistant carcinoma cells. Cancer Res (in press).

    Google Scholar 

  135. Chambers TC, Chalikonda I, Eilon G (1990) Correlation of protein kinase C translocation, P-glycoprotein phosphorylation and reduced drug accumulation in multidrug resistant human KB cells. Biochem Biophys Res Commun 169:253–259.

    Article  PubMed  Google Scholar 

  136. Ido M, Asao T, Sakurai M, Inagaki M, Saito M, Hidaka H (1986) An inhibitor of protein kinase C, 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) inhibits TPA-induced reduction of vincristine uptake from P388 murine leukemic cell. Leuk Res 10:1063–1069.

    Article  PubMed  CAS  Google Scholar 

  137. Ferguson PF, Cheng Y (1987) Transient protection of cultured human cells against antitumor agents by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 47:433–441.

    PubMed  CAS  Google Scholar 

  138. Dong Z, Ward NE, Fan D, Gupta KP, O’Brian CA (1991) In vitro model for intrinsic drug resitance: Effects of protein kinase C activators on the chemosensitivity of cultured human colon cancer cells. Mol Pharmacol 39:563–569.

    PubMed  CAS  Google Scholar 

  139. O’Brian CA, Fan C, Ward NE, Dong Z, Iwamoto L, Gupta KP, Earnest LE, Fidler IJ (1991) Transient enhancement of multidrug resistance by the bile acid deoxycholate in murine fibrosarcoma cells in vitro. Biochem Pharmacol 41:797–806.

    Article  PubMed  Google Scholar 

  140. Mori T, Takai Y, Minakuchi R, Yu B, Nishizuka Y (1980) Inhibitory action of chlorpromazine, dibucaine, and other phospholipid-interacting drugs on calcium-activated, phospholipid-dependent protein kinase. J Biol Chem 255:8378–8380.

    PubMed  CAS  Google Scholar 

  141. Schatzman RC, Wise BC, Kuo JF (1981) Phospholipid-sensitive calcium-dependent protein kinase: Inhibition by anti-psychotic drugs. Biochem Biophys Res Commun 98:669–676.

    Article  PubMed  CAS  Google Scholar 

  142. O’Brian CA, Liskamp RM, Solomon DH, Weinstein IB (1985) Inhibition of protein kinase C by tamoxifen. Cancer Res 45:2462–2465.

    PubMed  Google Scholar 

  143. Walker RJ, Lazzaro VA, Duggin GG, Horvath JS, Tiller DJ (1989) Cyclosporin A inhibits protein kinase C activity: A contributing mechanism in the development of nephrotoxicity? Biochem Biophys Res Commun 160:409–415.

    Article  PubMed  CAS  Google Scholar 

  144. Foxwell BMJ, Mackie A, Ling V, Ryffel B (1989) Identification of the multidrug resistance-related P-glycoprotein as a cyclosporin binding protein. Mol Pharmacol 36:543–546.

    PubMed  CAS  Google Scholar 

  145. Posada JA, McKeegan EM, Worthington KF, Morin MJ, Jaken S, Tritton TR (1989) Human multidrug resistant KB cells overexpress protein kinase C: Involvement in drug resistance. Cancer Commun 1:285–292.

    PubMed  CAS  Google Scholar 

  146. Palayoor ST, Stein JM, Hait WN (1987) Inhibition of protein kinase C by antineoplastic agents: Implications for drug resistance. Biochem Biophys Res Commun 148:718–725.

    Article  PubMed  CAS  Google Scholar 

  147. Aquino A, Hartman KD, Knode MC, Grant S, Huang K-P, Niu C-H, Glazer RI (1988) Role of protein kinase C in phosphorylation of vinculin in Adriamycin-resistant HL-60 leukemia cells. Cancer Res 48:3324–3329.

    PubMed  CAS  Google Scholar 

  148. O’Brian CA, Fan D, Ward NE, Seid C, Fidler IJ (1989) Level of protein kinase C activity correlates directly with resistance to Adriamycin in murine fibrosarcoma cells. FEBS Lett 246:78–82.

    Article  PubMed  Google Scholar 

  149. Anderson L, Cummings J, Bradshaw T, Smyth JF (1991) The role of protein kinase C and the phosphatidylinositol cycle in multidrug resistance in human ovarian cancer cells. Biochem Pharmacol 42:1427–1432.

    Article  PubMed  CAS  Google Scholar 

  150. Nishizuka Y (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334:661–665.

    Article  PubMed  CAS  Google Scholar 

  151. Ono Y, Fujii T, Ogita K, Kikkawa U, Igarashi K, Nishizuka Y (1988) The stucture, expression, and properties of additional members of the protein kinase C family. J Biol Chem 263:6927–6932.

    PubMed  CAS  Google Scholar 

  152. Ono Y, Fujii T, Ogita K, Kikkawa U, Igarashi K, Nishizuka Y (1989) Protein kinase C Ç subspecies from rat brain: Its structure, expression and properties. Proc Natl Acad Sci 86:3099–3103.

    Article  PubMed  CAS  Google Scholar 

  153. Osada S, Mizuno K, Saido TC, Akita Y, Suzuki K, Kuroki T, Ohno S (1990) A phorbol ester receptor/protein kinase, РKCη, a new member of the protein kinase C family predominantly expressed in lung and skin. J Biol Chem 265:22434–22440.

    PubMed  CAS  Google Scholar 

  154. Bacher N, Zisman Y, Berent E, Livneh E (1991) Isolation and characterization of РKC-Л, a new mamber of the protein kinase C-related gene family specifically expressed in lung, skin, and heart. Mol Cell Biol 11:126–133.

    PubMed  CAS  Google Scholar 

  155. Gollapudi S, Patel K, Jain V, Gupta S (1992) Protein kinase C isoforms in multidrug resistant P388/ADR cells: A possible role in daunorubicin transport. Cancer Lett 62:69–75.

    Article  PubMed  CAS  Google Scholar 

  156. Blobe GC, Sachs CW, Khan WA, Fabbro K, Stabel S, Wetsel W, Obeid LM, Fine RL, Hannun YA (1993) Selective regulation of expression of protein kinase C isoenzymes in multidrug-resistant MCF-7 cells: Functional significance of enhanced expression of PKC α. J Biol Chem 268:658–664.

    PubMed  CAS  Google Scholar 

  157. Yu G, Ahmad S, Aquino A, Fairchild CR, Trepel JB, Ohno S, Suzuki K, Tsuruo T, Cowan KH, Glazer RI (1991) Transfection with protein kinase C a confers increased multidrug resistance to MCF-7 cells expressing P-glycoprotein. Cancer Commun 3:181–189.

    PubMed  CAS  Google Scholar 

  158. Tritton TR (1991) Cell surface actions of adriamycin. Pharmacol Ther 49:293–309.

    Article  PubMed  CAS  Google Scholar 

  159. Meyers MB, Merluzzi VJ, Spengler BA, Biedler JL (1986) Epidermal growth factor receptor is increased in multidrug-resistant Chinese hamster and mouse tumor cells. Proc Natl Acad Sci USA 83:5521–5525.

    Article  PubMed  CAS  Google Scholar 

  160. Posada J, Vichi P, Tritton TR (1989) Protein kinase C in Adriamycin action and resistance in mouse sarcoma 180 cells. Cancer Res 49:6634–6639.

    PubMed  CAS  Google Scholar 

  161. Calderwood SK, Stevenson MA (1993) Inducers of the heat shock response stimulate phospholipase C and phospholipase A2 activity in mammalian cells. J Cell Physiol 155:248–256.

    Article  PubMed  CAS  Google Scholar 

  162. Yang JM, Chin KY, Hait WN (1995) Involvement of Phospholipase C in heat-shock induced phosphorylation of P-glycoprotein in multidrug resistant human breast cancer cells. Biochem Biophys Res Commun 210:21–30.

    Article  PubMed  CAS  Google Scholar 

  163. Hamada H, Tsuruo T (1986) Functional role for the 170- to 180-kDa glycoprotein specific to drug-resistant tumor cells as revealed by monoclonal antibodies. Proc Natl Acad Sci USA 83:7785–7789.

    Article  PubMed  CAS  Google Scholar 

  164. Mechetner EB, Roninson IB (1992) Efficient inhibition of P-glycoprotein-mediated multidrug resistance with a monoclonal antibody. Proc Natl Acad Sci USA 89:5824–5828.

    Article  PubMed  CAS  Google Scholar 

  165. Tsuruo T, Hamada H, Sata S, Heike Y (1987) Inhibition of multidrug-resistant human tumor growth in athymic mice by anti-P-glycoprotein monoclonal antibodies. Jpn J Cancer Res 80:627–631.

    Google Scholar 

  166. Pearson JW, Fogler WE, Volker K, Usui N, Goldenberg SK, Gruys E, Riggs CW, Domschlies D, Wiltrout RH, Tsuruo T, Pastan I, Gottesman MM, Longo DL (1991) Reversal of drug resistance in a human colon cancer xenograft expressing MDR1 complementary DNA by in vivo administration of MRK-16 monoclonal antibody. J Natl Cancer Inst 83:1386–1391.

    Article  PubMed  CAS  Google Scholar 

  167. Naito M, Tsuge H, Kuroko C, Koyama T, Tomida A, Tatsuta T, Heike Y, Tsuruo T (1993) Enhancement of cellular accumulation of cyclosporine by anti-P-glycoprotein monoclonal antibody MRK-16 and synergistic modulation of multidrug resistance. J Natl Cancer Inst 85:311–316.

    Article  PubMed  CAS  Google Scholar 

  168. Mickisch GH, Pai LH, Gottesman MM, Pastan I (1992) Monoclonal antibody MRK16 reverses the multidrug reistance of multidrug-resistant transgenic mice. Cancer Res 52:4427–4432.

    PubMed  CAS  Google Scholar 

  169. Ahmad I, Allen TM (1992) Antibody-mediated specific binding and cytotoxicity of liposome-entrapped doxorubicin to lung cancer cells in vitro. Cancer Res 52:4817–4820.

    PubMed  CAS  Google Scholar 

  170. Goldsmith ME, Madden MJ, Morrow CS, Cowan KH (1993) A Y-box consensus sequence is required for basal expression of the human multidrug resistance (mdr1) gene. J Biol Chem 268:5856–5860.

    PubMed  CAS  Google Scholar 

  171. Madden MJ, Morrow CS, Nakagawa M, Goldsmith ME, Fairchild CR, Cowan KH (1993) Identification of 5′ and 3′ sequences involved in the regulation of transcription of the human mdr1 gene in vivo. J Biol Chem 268:8290–8297.

    PubMed  CAS  Google Scholar 

  172. Chaudhary PM, Roninson IB (1993) Induction of multidrug resistance in human cells by transient exposure to different chemotherapeutic drugs. J Natl Cancer Inst 85:632–639.

    Article  PubMed  CAS  Google Scholar 

  173. Burt RK, Thorgeirssen SS (1988) Coinduction of MDR-1 multidrug resistance and cytochrome P-450 genes in rat liver by xenobiotics. J Natl Cancer Inst 80:1383–1386.

    Article  PubMed  CAS  Google Scholar 

  174. Mickley LA, Bates SE, Richert ND, Currier S, Tanaka S, Foss F, Rosen N, Fojo AT (1989) Modulation of the expression of a multidrug resistance gene by differentiating agents. J Biol Chem 264:18031–18040.

    PubMed  CAS  Google Scholar 

  175. Morrow CS, Nakagawa M, Goldsmith ME, Madden MJ, Cowan KH (1994) Reversible transcriptional activation of mdr1 by sodium butyrate treatment of human colon cancer cells. J Biol Chem 269:10739–10746.

    PubMed  CAS  Google Scholar 

  176. Hill BT, Deuchars K, Hosking LK, Ling V, Whelan KDH (1990) Overexpression of P-glycoprotein in mammalian tumor cell lines after fractionated X-irradiation in vitro. J Natl Cancer Inst 82:607–612.

    Article  PubMed  CAS  Google Scholar 

  177. Piekarz RL, Cohen D, Horwitz SB (1993) Progesterone regulates the murine multidrug resistance mdr1b gene. J Biol Chem 268:7613–7616.

    PubMed  CAS  Google Scholar 

  178. Chin KV, Pastan I, Gottesman MM (1993) Function and regulation of the human multidrug resistance gene. Adv Cancer Res 60:157–180.

    Article  PubMed  CAS  Google Scholar 

  179. Budillon A, Kelly K, Cowan K, Cho-Chung YS (1993) 8-Cl-cAMP, a site-selective cAMP analog as a novel agent that inhibits the promoter activity of multidrug-resistance gene. Proc Am Assoc Cancer Res 34:1940.

    Google Scholar 

  180. Chaudhary PM, Roninson IB (1992) Activation of MDR-1 (P-glycoprotein) gene expression in human cells by protein kinase C agonists. Oncol Res 4:281–290.

    PubMed  CAS  Google Scholar 

  181. Chin KV, Tanaka S, Darlington G, Pastan I, Gottesman MM (1990) Heat shock and arsenite increase expression of the multidrug resistance (MDR1) gene in human renal carcinoma cells. J Biol Chem 265:221–226.

    PubMed  CAS  Google Scholar 

  182. Cech TR (1988) Ribozymes and their medical implications. JAMA 260:3030–3034.

    Article  PubMed  CAS  Google Scholar 

  183. Kobayashi H, Dorai T, Holland JF, Ohnuma T (1994) Reversal of drug sensitivity in multidrug-resistant tumor cells by an MDR1 (PGY1) ribozyme. Cancer Res 54:1271–1275.

    PubMed  CAS  Google Scholar 

  184. Scanlon KJ, Ishida H, Kashani-Sabet M (1994) Ribozyme-mediated reversal of the multidrug-resistant phenotype. Proc Natl Acad Sci USA 91:11123–11127.

    Article  PubMed  CAS  Google Scholar 

  185. Kiehntopf M, Brach MA, Licht T, Petschauer S, Karawajew L, Kirshning C, Herrmann F (1994) Ribozyme-mediated cleavage of the MDR1 transcript restores chemosensitivity in previously resistant cancer cells. EMBO J 13:4645–4652.

    PubMed  CAS  Google Scholar 

  186. Kobayashi H, Dorai T, Holland JF, Ohnuma T (1993) Cleavage of human MDR1 mRNA by a hammerhead ribozyme. FEBS Left 319:71–74.

    Article  CAS  Google Scholar 

  187. Sugawara I, Kataoka I, Morishita Y, Hamada H, Tsuruo T, Itoyama S, Mori S (1988) Tissue distribution of P-glycoprotein encoded by a multidrug-resistant gene as revealed by a monoclonal antibody, MRK 16. Cancer Res 48:1926–1929.

    PubMed  CAS  Google Scholar 

  188. Sugawara I, Nakahama M, Hamada H, Tsuruo T, Mori S (1988) Apparent stronger expression in the human adrenal cortex than in the human adrenal medulla of Mr 170,000–180,000 P-glycoprotein. Cancer Res 48:4611–4614.

    PubMed  CAS  Google Scholar 

  189. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham, MD (1987) Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci USA 84:7735–7738.

    Article  PubMed  CAS  Google Scholar 

  190. Lieberman DM, Reithmeier RAF, Ling V, Charuk JHM, Goldberg H, Skorecki KL (1989) Identification of P-glycoprotein in renal brush border membranes. Biochem Biophys Res Commun 162:244–252.

    Article  PubMed  CAS  Google Scholar 

  191. Gosland MP, Vore M, Goodin S, Tsuboi C (1993) Estradiol-17β-(β-D-glucuronide): A cholestatic organic anion and substrate for the multidrug resistance transporter. Proc Am Assoc Cancer Res 34:1842.

    Google Scholar 

  192. Ferguson LR, Baguley BC (1993) Multidrug resistance and mutagenesis. Mutat Res 285:79–90.

    Article  PubMed  CAS  Google Scholar 

  193. Cordon-Cardo C, O’Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR, Bertino JR (1989) Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA 86:695–698.

    Article  PubMed  CAS  Google Scholar 

  194. Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC (1989) Immuno-histochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: Evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein. J Histochem Cytochem 37:159–164.

    Article  PubMed  CAS  Google Scholar 

  195. Chaudhary PM, Roninson IB (1991) Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 66:85–94.

    Article  PubMed  CAS  Google Scholar 

  196. Chaudhary PM, Mechetner EB, Roninson IB (1992) Expression and activity of the multidrug resistance P-glycoprotein in human peripheral blood lymphocytes. Blood 80:2735–2739.

    PubMed  CAS  Google Scholar 

  197. Klimecki WT, Futscher BW, Grogan TM, Dalton WS (1994) P-glycoprotein expression and function in circulating blood cells from normal volunteers. Blood 83:2451–2458.

    PubMed  CAS  Google Scholar 

  198. Schinkel AH, Smit JJM, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, Mol CAAM, van der Valk MA, Robanus-Maandag EC, te Riele HPJ, Berns AJM, Borst P (1994) Disruption of the mouse mdr1a. P-glycoprotein gene leads to a deficiency in the blood-brain barier and to increased sensitivity to drugs. Cell 77:491–502.

    Article  PubMed  CAS  Google Scholar 

  199. Smit JJM, Schinkel AH, Elferink RPJO, Groen AK, Wagenaar E, van Deemter L, Mol CAAM, Ottenhoff R, van der Lugt NMT, van Roon MA, van der Valk MA, Offerhaus GJA, Berns AJM, Borst P (1993) Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75:451–462.

    Article  PubMed  CAS  Google Scholar 

  200. Fojo AT, Ueda K, Slamon DJ, Poplack DG, Gottesman MM, Pastan I (1987) Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci USA 84:265–269.

    Article  PubMed  CAS  Google Scholar 

  201. Goldstein LJ, Galski H, Fojo A, Willingham M, Lai S-L, Gazdar A, Pirker R, Green A, Crist W, Brodeur GM, Lieber M, Cossman J, Gottesman MM, Pastan I (1989) Expression of a multidrug resistance gene in human cancers. J Natl Cancer Inst 81:116–124.

    Article  PubMed  CAS  Google Scholar 

  202. Nooter K, Herwijer H (1991) Multidrug resistance (MDR) in human cancers. Br J Cancer 63:663–669.

    Article  PubMed  CAS  Google Scholar 

  203. Holzmayer TA, Hilsenbeck S, Von Hoff DD, Roninson IB (1992) Clinical correlates of MDR1 (P-glycoprotein) gene expression in ovarian and small-cell lung carcinomas. J Natl Cancer Inst 84:1486–1491.

    Article  PubMed  CAS  Google Scholar 

  204. Marie JP (1995) P-glycoprotein in adult hematologic malignancies. Hematol Oncol Clin North Am 9:239–249.

    PubMed  CAS  Google Scholar 

  205. Pirker R, Wallner J, Geissler K, Linkesh W, Haas OA, Bettelheim P, Hopfner M, Scherrer R (1991) MDR1 gene expression and treatment outcome in acute myeloid leukemia. J Natl Cancer Inst 83:708–712.

    Article  PubMed  CAS  Google Scholar 

  206. Marie JP, Zittoun R, Sikic BI (1991) Multidrug resistance (mdr1) gene expression on adult acute leukemias: Correlations with treatment outcome and in vitro drug sensitivity. Blood 78:586–592.

    PubMed  CAS  Google Scholar 

  207. Campos L, Guyout D, Archimbaud E, Calmard-Oriol P, Tsuruo T, Troncy J, Treille D, Fiere D (1992) Clinical significance of multidrug resistance P-glycoprotein expression on acute nonlymphoblastic leukemia cells at diagnosis. Blood 79:473–476.

    PubMed  CAS  Google Scholar 

  208. Chan HSL, Haddad B, Thorner PS, DeBoer G, Lin YP, Oncrusek N, Yeger H, Ling V (1991) P-glycoprotein expression as a predictor of the outcome of therapy for neuroblastoma. N Engl J Med 325:1608–1614.

    Article  PubMed  CAS  Google Scholar 

  209. Chan HSL, Thorner PS, Haddad G, Ling V (1990) Immunohistochemical detection of P-glycoprotein: Prognostic correlation in soft tissue sarcoma of childhood. J Clin Oncol 8:689–704.

    PubMed  CAS  Google Scholar 

  210. Dalton WS, Grogan TM, Rybski JA, Scheper RJ, Richter W, Kailey J, Broxterman HJ, Pinedo HM, Salmon SE (1989) Immunohistochemical detection and quantitation of P-glycoprotein in multiple drug-resistant human myeloma cells: Association with level of drug resistance and drug accumulation. Blood 73:747–752.

    PubMed  CAS  Google Scholar 

  211. Salmon SE, Grogan TM, Miller T, Scheper R, Dalton WS (1989) Prediction of doxorubicin resistance in vitro in myeloma, lymphoma, and breast cancer by P-glycoprotein staining. J Nad Cancer Inst 81:696–701.

    Article  CAS  Google Scholar 

  212. Epstein J, Barlogie B (1989) Tumor resistance to chemotherapy associated with expression of the multidrug resistance phenotype. Cancer Bull 41:41–44.

    Google Scholar 

  213. Epstein J, Xiao H, Oba BK (1989) P-glycoprotein expression in plasma-cell myeloma is associated with resistance to VAD. Blood 74:913–917.

    PubMed  CAS  Google Scholar 

  214. Fisher GA, Sikic BI (1995) Clinical studies with modulators of multidrug resistance. Hematol Oncol Clin North Am 9:363–382.

    PubMed  CAS  Google Scholar 

  215. Benson AB, Trump DL, Koeller JM, Egorin MI, Olman EA, Wittes RS, Davis TE, Tormey DC (1985) Phase I study of vinblastine and verapamil given by concurrent iv infusion. Cancer Treat Rep 69:795–799.

    PubMed  Google Scholar 

  216. Dalton WS, Grogan TM, Meltzer PS, Scheper RJ, Durie BGM, Taylor CW, Miller TP, Salmon SE (1989) Drug-resistance in multiple myeloma and non-Hodgkin’s lymphoma: Detection of P-glycoprotein and potential circumvention by addition of verapamil to chemotherapy. J Clin Oncol 7:415–424.

    PubMed  CAS  Google Scholar 

  217. Salmon SE, Dalton WS, Grogan TM, Plezia P, Lehnert M, Roe DJ, Miller TP (1991) Multidrug-resistant myeloma: Laboratory and clinical effects of verapamil as a chemosensitizer. Blood 78:44–50.

    PubMed  CAS  Google Scholar 

  218. Trump DL, Smith DC, Ellis PG, Rogers MP, Schold SC, Winer EP, Panella TJ, Jordan VC, Fine RL (1992) High-dose oral tamoxifen, a potential multidrug-resistance-reversal agent: Phase I trial in combination with vinblastine. J Natl Cancer Inst 84:1811–1816.

    Article  PubMed  CAS  Google Scholar 

  219. Yahanda AM, Adler KM, Fisher GM, Brophy NA, Halsy J, Hardy RI, Gosland MP, Lum BL, Sikic BI (1992) Phase I trial of etoposide with cyclosporine as a modulator of multidrug resistance. J Clin Oncol 10:1624–1634.

    PubMed  CAS  Google Scholar 

  220. Lum BL, Kaubisch S, Yahanda AM, Adler KM, Jew L, Ehsan MN, Brophy NA, Halsey J, Gosland MP, Sikic BI (1992) Alteration of etoposide pharmacokinetics and pharmacodynamics by cyclosporine in a phase I trial to modulate multidrug resistance. J Clin Oncol 10:1635–1642.

    PubMed  CAS  Google Scholar 

  221. Bartlett NL, Lum BL, Fisher GA, Brophy NA, Ehsan MN, Halsey J, Sikic BI (1994) Phase I trial of doxorubicin with cyclosporine as a modulator of multidrug resistance. J Clin Oncol 12:835–842.

    PubMed  CAS  Google Scholar 

  222. List AF, Spier CS, Greer J, Wolff S, Hutter J, Dorr R, Salmon S, Futscher B, Baier M, Dalton W (1993) Phase I/II trial of cyclosporine as a chemotherapy-resistance modifier in acute leukemia. J Clin Oncol 11:1652–1660.

    PubMed  CAS  Google Scholar 

  223. Hausdorff J, Fisher GA, Halsey J, Collins HL, Lum BL, Brophy NA, Duran GE, Nix D, Pearce T, Sikic BI (1995) A phase I trial of etoposide with the oral cyclosporin SDZ PSC 833, a modulator of multidrug resistance (MDR). Proc Am Soc Clin Oncol 14:181.

    Google Scholar 

  224. Collins HL, Fisher GA, Hausdorff J, Lum BL, Pearce T, Halsey J, Sikic BI (1995) Phase I trial of paclitaxel in combination with SDZ PSC 833, a multidrug resistance modulator. Proc Am Soc Clin Oncol 14:181.

    Google Scholar 

  225. Wishart GC, Bisset D, Paul J, Jodre UD, Harnett A, Habeshaw T, Kerr DJ, Macham MA, Soukop M, Leonard RCF, Knepil J, Kaye SB (1994) Quinidine as a resistance modulator of epirubicin in advanced breast cancer: Mature results of a placebo-controUed randomized trial. J Clin Oncol 12:1771–1777.

    PubMed  CAS  Google Scholar 

  226. Miller RL, Bukowski RM, Budd GT, Purvis J, Weick JK, Shepard K, Midha KK, Ganapathi R (1988) Cunical modulation of doxorubicin resistance by the calmoduHn-inhibitor, trifluoperazine: A phase I/II trial. J Clin Oncol 6:880–888.

    PubMed  CAS  Google Scholar 

  227. Solary E, Caillot D, Chauffert B, Casanovas RO, Dumas M, Maynadie M, Guy H (1992) Feasability of using quinine, a potential multidrug resistance-reversing agent, in combination with mitoxantrone and cytarabine for the treatment of acute leukemias J Clin Oncol 10:1730–1736.

    PubMed  CAS  Google Scholar 

  228. Christen RD, McClay EF, Plaxe SC, Yen SSC, Kim S, Kirmani S, Wilgus LL, Heath DD, Shalinsky DR, Freddo JL, Braly PS, O’Quigley J, Howe USB (1993) Phase I/pharmacokinetic study of high-dose progesterone and doxorubicin. J Clin Oncol 11:2417–2426.

    PubMed  CAS  Google Scholar 

  229. Philip PA, Joel S, Monkman SC, Dolega-Ossowski E, Tonkin K, Carmichael J, Idle IR, Harris AL (1992) A phase I study on the reversal of multidrug resistance (MDR) in vivo: Nifedipine plus etoposide. Br J Cancer 65:267–270.

    Article  PubMed  CAS  Google Scholar 

  230. Linn SC, van Kalken CK, an TeUingen O, van der Valk P, van Groeningen CJ, Kuiper CM, Pinedo HM, Giaccone G (1994) Clinical and pharmacologic study of multidrug resistance reversal with vinblastine and bepridil. J Clin Oncol 12:812–819.

    PubMed  CAS  Google Scholar 

  231. Podda S, Ward M, Himelstein A, Richardson C, de la Flor-Weiss E, Smith L, Gottesman M, Pastan I, Bank A (1992) Transfer and expression of the human multiple drug resistance gene into live mice. Proc Natl Acad Sci USA 89:9676–9680.

    Article  PubMed  CAS  Google Scholar 

  232. Sorrentino BP, Brandt SJ, Bodine D, Gottesman M, Pastan I, Cline A, Nienhuis AW (1992) Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science 257:99–103.

    Article  PubMed  CAS  Google Scholar 

  233. Hanania E, Deisseroth A (1994) Serial transplantation shows that early hematopoietic precursor cells are transduced by MDR-1 retroviral vector in a mouse gene therapy model. Cancer Gene Ther 1:21–25.

    PubMed  CAS  Google Scholar 

  234. Hanania EG, Fu S, Zu Z, Hegewisch-Becker S, Korbling M, Hester I, Durett A, Andreeff M, Mechetner E, Roninson IB, Giles RE, Berenson R, Heimfeld S, Deisseroth AB (1995) Chemotherapy resistance to taxol in clonogenic progenitor cells following transduction of CD34 selected marrow and peripheral blood cells with a retrovirus that contains the MDR-1 chemotherapy resistance gene. Gene Ther 2:285–294.

    PubMed  CAS  Google Scholar 

  235. O’Shaughnessy JA, Cowan KH, Nienhuis AW, McDonogh KT, Sorrentino BP, Dunbar CE, Chiang Y, Wilson W, Goldspiel B, Kohler D (1994) Retroviral mediated transfer of the human multidrug resistance gene (MDR-1) into hematopoietic stem cells during autologous transplantation after intensive chemotherapy for metastatic breast cancer. Hum Gene Ther 5:891–911.

    Article  PubMed  Google Scholar 

  236. Deisseroth AB, Kavanagh J, Champlin R (1994) Use of safety-modified retroviruses to introduce chemotherapy resistance sequences into normal hematopoietic cells for chemoprotection during therapy of ovarian cancer: A pilot trial. Hum Gene Ther 5:1507–1522.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ford, J.M., Yang, JM., Hait, W.N. (1996). P-Glycoprotein-Mediated Multidrug Resistance: Experimental and Clinical Strategies for its Reversal. In: Hait, W.N. (eds) Drug Resistance. Cancer Treatment and Research, vol 87. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1267-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1267-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8540-3

  • Online ISBN: 978-1-4613-1267-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics