Molecular genetics of inversion 16 leukemia: implications for leukemogenesis

  • David F. Claxton
  • Paula Marlton
  • Michael J. Siciliano
Part of the Cancer Treatment and Research book series (CTAR, volume 84)


The M4Eo subtype of acute myeloid leukemia (AML) has distinctive bone marrow morphology characterized by the presence of dysplastic eosinophils with abnormal granulation. This distinct subtype of acute myelomonocytic leukemia (AMML or AML-M4) is predictive of a more favorable outcome with longer remission duration and survival following appropriate chemotherapy [1,2]. The original descriptions of this entity were reported in association with the chromosome 16 abnormalities inversion(16)(p13;q22), translocation (16;16)(p13;q22), and deletion (16)(q22) [1,3,4], referred to hereafter as inv(16), t(16;16), and del(16q), respectively. Thus a cytogenetic-clinicopathologic association was described between M4Eo and these chromosomal abnormalities. The association is not exclusive, however, with many examples of inv(16) now described in the setting of other AML subtypes such as M2 and M5 as well as myelodysplastic syndrome [5,6]. Some important recent work has been the cloning of the breakpoints associated with inv(16) and t(16;16) and the identification of the genes associated with those chromosome alterations. The steps of that process will be reviewed here, as will the development of molecular genetic tools and procedures which that work has made available to diagnostics. We will then consider the biological and clinical implications of a deletion that has been shown to have occurred in some inv(16) patients.


Acute Myeloid Leukemia Myosin Heavy Chain Acute Promyelocytic Leukemia Acute Myeloid Leukemia Patient Multidrug Resistance Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Le Beau MM, Larson RA, Bitter MA, Vardiman JW, Golomb HM, Rowley JD (1983). Association of an inversion of chromosome 16 with abnormal marrow eosinophils in acute myelomonocytic leukemia: a unique cytogenetic-clinical pathological association. N Engl J Med 309:630.PubMedCrossRefGoogle Scholar
  2. 2.
    Larson RA, Williams SF, Le Beau MM, Bitter MA, Vardiman JW, Rowley JD (1986). Acute myelomonocytic leukemia with abnormal eosinophils and inv(16) or t(16;16) has a favorable prognosis. Blood 68:1242.PubMedGoogle Scholar
  3. 3.
    Arthur DC, Bloomfield CD (1983). Partial deletion of the long arm of chromosome 16 and bone marrow eosinophilia in acute nonlymphocytic leukemia, a new association. Blood 61:994.PubMedGoogle Scholar
  4. 4.
    Hogge DE, Misawa S, Parsa NZ, Pollak A, Testa JR (1984). Abnormalities of chromosome 16 in association with acute myelomonocytic leukemia and dysplastic bone marrow eosinophils. J Clin Oncol 2:550.PubMedGoogle Scholar
  5. 5.
    Campbell LJ, Challis J, Fok T, Garson OM (1991). Chromosome 16 abnormalities associated with myeloid malignancies. Genes Chromosomes Cancer 3:55.PubMedCrossRefGoogle Scholar
  6. 6.
    Estey E, Trujillo JM, Cork A, O’Brien S, Beran M, Kantarjian H, Keating M, Freireich EJ, Stass S (1992). AML-associated cytogenetic abnormalities [inv(16), del(16), t(8;21)] in patients with myelodysplastic syndromes. Hematol Path 6:4348.Google Scholar
  7. 7.
    Wessels JW, Mollevanger P, Dauwerse JG, Cluitmans FHN, Breuning MH, Beverstock GC (1991). Two distinct loci on the short arm of chromosome 16 are involved in myeloid leukemia. Blood 77:1555.PubMedGoogle Scholar
  8. 8.
    Dauwerse JG, Jumelet EA, Wessels JW, Saris JJ, Hagemeijer A, Beverstock GC, van Ommen GJB, Breuning MH (1992). Extensive cross-homology between the long and the short arm of chromosome 16 may explain leukemic inversions and translocations. Blood 79:1299.PubMedGoogle Scholar
  9. 9.
    Liu P, Claxton DF, Marlton P, Hajra A, Siciliano J, Freedman M, Chandrasekharappa SC, Yanagisawa K, Stallings RL, Collins FS, Siciliano MJ (1993). Identification of yeast artificial chromosomes containing the inversion 16 p-arm breakpoint associated with acute myelomonocytic leukemia. Blood 82:716–721.PubMedGoogle Scholar
  10. 10.
    Liu P, Tarie SA, Hajra A, Claxton DF, Marlton P, Freedman M, Siciliano MJ, Collins FS (1993). Fusion between transcription factor CBFβ/PEBP2β and a myosin heavy chain in acute myeloid leukemia. Science 261:1041–1044.PubMedCrossRefGoogle Scholar
  11. 11.
    Wang S, Wang Q, Crute BE, Melnikova IN, Keller SR, Speck NA (1993). Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding-factor. Mol Cell Biol 13:3324.PubMedGoogle Scholar
  12. 12.
    Claxton DF, Liu P, Hsu HB, Marlton P, Hester J, Collins F, Deisseroth AB, Rowley JD, Siciliano MJ (1994). Detection of fusion transcripts generated by the inversion 16 chromosome in acute myelogenous leukemia. Blood 83:1750.PubMedGoogle Scholar
  13. 13.
    Marlton P, Claxton DF, Liu P, Estey E, Beran M, LeBeau M, Testa JR, Collins FS, Rowley JD, Siciliano MJ (1995). Molecular characterization of 16p deletions associated with inversion 16 defines the critical fusion for leukemogenesis. Blood 85:772.PubMedGoogle Scholar
  14. 14.
    Dauwerse JG, Wessels JW, Giles RH, Wiegant J, van der Reijden BA, Fugazza G, Jumelet EA, Smit E, Baas F, Raap AK, Hagemeijer A, Beverstock GC, van Ommen GJB, Breuning MH (1993). Cloning the breakpoint cluster region of the inv(16) in acute nonlymphocytic leukemia M4 Eo. Hum Mol Genet 2:1527.PubMedCrossRefGoogle Scholar
  15. 15.
    Kuss BJ, Deeley RG, Cole SPC, Willman CL, Kopecky KJ, Wolman SR, Eyre HJ, Lane SA, Nancarrow JK, Whitmore SA, Callen DF (1994). Deletion of the gene for the multidrug resistance associated protein (MRP) is associated with good prognosis in acute myeloid leukemia with the inversion of chromosome 16. Lancet 343:1531.PubMedCrossRefGoogle Scholar
  16. 16.
    Liu P, Siciliano J, Seong D, Craig J, Zhao Y, de Jong PJ, Siciliano MJ (1993). Inter-Alu-PCR primers and conditions for isolating human chromosome painting probes from hybrid cells. Cancer Genet Cytogenet 65:93.PubMedCrossRefGoogle Scholar
  17. 17.
    Hébert J, Cayuela JM, Daniel MT, Berger R, Sigaux F (1994). Detection of minimal residual disease in acute myelomonocytic leukemia with abnormal marrow eosinophils by nested polymerase chain reaction with allele specific amplification. Blood 84:2291.PubMedGoogle Scholar
  18. 18.
    Bartram CR (1993). Detection of minimal residual leukemia by the polymerase chain reaction: Potential implications for therapy. Clin Chim Acta 217:75.PubMedCrossRefGoogle Scholar
  19. 19.
    Thirman MJ, Mbangkollo D, Kobayashi H, McCabe NR, Gill HJ, Rowley JD, Diaz MO (1993). Molecular analysis of 3′ deletions of the MLL gene in 11q23 translocation reveals that the zinc finger domains of MLL are often deleted. Proc Am Assoc Cancer Res 34:495 (abstract).Google Scholar
  20. 20.
    Corral J, Forster A, Thompson D, Lampert F, Kaneko Y, Slater R, Kroes WG, van der Schoot CE, Ludwig WD, Karpas A et al. (1993). Acute leukemias of different lineages have similar MLL gene fusions encoding related chimeric proteins resulting from chromosomal translocation. Proc Natl Acad Sci USA 90:8538.PubMedCrossRefGoogle Scholar
  21. 21.
    Shimizu K, Myoshi H, Kozu T, Nagata J, Enomoto K, Maseki N, Kaneko Y, Ohki M (1992). Consistent disruption of the AML1 gene occurs within a single intron in the t(8;21) chromosomal translocation. Cancer Res 52:6945.PubMedGoogle Scholar
  22. 22.
    Shtalrid M, Talpaz M, Blick M, Romero P, Kantarjian H, Taylor K, Trujillo J, Schachner JU, Guttterman JU, Kurzrock R (1988). Philadelphia-negative chronic myelogenous leukemia with breakpoint cluster region rearrangement: molecular analysis, clinical charateristics, and response to therapy. J Clin Oncol 6:1569.PubMedGoogle Scholar
  23. 23.
    Melo JV, Gordon DE, Cross NC, Goldman JM (1993). The ABL-BCR fusion gene is expressed in chromic myeloid leukemia. Blood 81:158.PubMedGoogle Scholar
  24. 24.
    Alcalay M. Zangrilli D, Fagioli M, Pandolfi PP, Mencarelli A, Lo Coco F, Biondi A, Grignani F, Pelicci PG (1992). Expression pattern of the RARA-PML fusion gene in acute promyelocytic leukemia. Proc Natl Acad Sci USA 89:4840.PubMedCrossRefGoogle Scholar
  25. 25.
    Borrow J, Solomon E (1992). Molecular analysis of the t(15;17) translocation in acute promyelocytic leukaemia. Baillieres Clin Haematol 5:833.PubMedCrossRefGoogle Scholar
  26. 26.
    Cole SPC, Bhardwaj JH, Gerlach JE, Mackie JE, Grant CE, Almquist KC, Stewart AJ, Kurz EU, Duncan ANV, Deely RG (1992). Overexpression of a transporter gene in a multidrug-resistant lung cancer cell line. Science 258:1650.PubMedCrossRefGoogle Scholar
  27. 27.
    Ghaddar HM, Plunkett W, Kantarjian HM, Pierce S, Freireich EJ, Keating M, Estey EH (1994). Long-term results following treatment of newly-diagnosed acute myelogenous leukemia with continuous-infusion high-dose cytosine arabinoside. Leukemia 8:1269.PubMedGoogle Scholar
  28. 28.
    Ohyashiki K, Ohyashiki JH, Kondo M, Ito H, Toyama K (1988). Chromosome change at 16q22 in nonlymphocytic leukemia: clinical implictionon leukemia patients with inv(16) versus del(16). Leukemia 2:35.PubMedGoogle Scholar
  29. 29.
    Betts DR, Rohatiner AZS, Evans ML, Rassam SMB, Lister A, Gibbons B (1992). Abnormalities of chromosome 16q in myeloid malignancy: 14 new cases and a review of the literature. Leukemia 6:1250.PubMedGoogle Scholar
  30. 30.
    Marlton P, Keating M, Kantarjian H, Pierce S, O’Brien S, Freireich EH, Estey E (in press). Cytogenetic and clinical correlates in AML patients with abnormalities of chromosome 16. Leukemia.Google Scholar
  31. 31.
    Holmes R, Keating JD, Cork A, Broach Y, Trujillo J, Dalton WT, McCredie KB, Freireich EJ (1985). A unique pattern of central nervous system relapse in acute myelomonocytic leukemia associated with inv(16)(p13;q22). Blood 65:1071.PubMedGoogle Scholar
  32. 32.
    Ogawa E, Inuzuka M, Maruyama M, Satake M, Naito-Fujimoto M, Ito Y, Shigesada K (1993). Molecular cloning and characterization of PEBp2b, the heterodimeric partner of a novel drosophilia runt-related DNA binding protein PEBP2a. Virology 194:314.PubMedCrossRefGoogle Scholar
  33. 33.
    Wang S, Speck NA (1992). Purification of core-binding factor, a protein that binds the conserved core site in murine leukemia virus enhancers. Mol Cell Biol 12:89.PubMedGoogle Scholar
  34. 34.
    Satake M, Inuzuka M, Shigesada K, Oikawa T, Ito Y (1992). Differential expression of subspecies of Polyomavirus and murine leukemia virus enhancer core binding protein, PEBP2, in various hematopoietic cells. Jpn J Cancer Res 83:714.PubMedCrossRefGoogle Scholar
  35. 35.
    Ogawa E, Maruyama M, Kagoshima H, Inuzuka M, Lu J, Satake M, Shigesada K, Ito Y (1993). PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proc Natl Acad Sci USA 90:6859.PubMedCrossRefGoogle Scholar
  36. 36.
    Kagoshima K, Shigesada K, Satake M, Ito Y, Myoshi H, Ohki M, Pepling M, Gergen P (1993). The runt domain identifies a new family of hetromeric transcriptional regulators. Trends Genet 9:338.PubMedCrossRefGoogle Scholar
  37. 37.
    Levanon D, Negreanu V, Bernstein Y, Bar-Am I, Avivi L, Groner Y (1994). AML1, AML2, and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization. Genomics 23:425.PubMedCrossRefGoogle Scholar
  38. 38.
    Calabi F, Rhodes M, Williamson P, Boyd Y (in press). Identification and chromosomal mapping of a third mouse runt isotype. Genomics.Google Scholar
  39. 39.
    Wijmenga C, Speck NA, Dracopoli ND, Lewis AF, Hofker MH, Liu P, Collins FS (in press). Identification of a new murine Runt-domain containing gene, Cbfa3, and localization of the human homolog, CBFA3, to chromosome 1p35-pter. Genomics.Google Scholar
  40. 40.
    Base S-C, Ogawa E, Maruyama M, Oka H, Satake M, Shigesada K, Jenkins NA, Gilbert DJ, Copeland NG, Ito Y (1994). PEBP2αB/mouse AML1 consists of multiple isoforms that possess differential transactivation potentials. Mol Cell Biol 14:3242.Google Scholar
  41. 41.
    Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y, Ohki M (1991). t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci USA 88:10431.PubMedCrossRefGoogle Scholar
  42. 42.
    Satake M, Ibaraki T, Ito Y (1988). Modulation of polymavirus enhancer binding proteins by Ha-ras oncogene. Oncogene 3:69.Google Scholar
  43. 43.
    Zhu X, Yeadon J, Burden SJ (1994). AM11 is expressed in skeletal muscle and is regulated by innervation. Mol Cell Biol 14:8051.PubMedGoogle Scholar
  44. 44.
    Prosser HM, Wotton D, Gegonne A, Ghysdael J, Wang S, Speck NA, Owen MJ (1992). A phorbol ester response element within the human T-cell receptor B-chain enhancer. Proc Natl Acad Sci USA 89:9934.PubMedCrossRefGoogle Scholar
  45. 45.
    Hsiang YH, Spencer D, Wang S, Speck NA, Raulet DH (1993). The role of viral enhancer ‘core’ motif-related sequences in regualting T cell receptor-y and -gamma gene expression. J Immunol 150:3905.PubMedGoogle Scholar
  46. 46.
    Frank R, Zhang J, Hiebert S, Myers S, Nimer S (1994). AML1B but not AML1/ETO fusion protein can transactivate the GM-CSF promoter. Blood 84:229a (abstract).Google Scholar
  47. 47.
    Suzow J, Friedman AD (1993). The murine myeloperoxidase promoter contains several functional elements, one of which binds a cell type-restricted transcripton factor, myeloid nuclear factor 1 (MyNF1). Mol Cell Biol 13:2141.PubMedGoogle Scholar
  48. 48.
    Friedman AD, Meyers S, Hiebert SW, Suzow J (1993). PEBP2aB, The murine homolog of AML1 binds and transcriptionally activates the myeloperoxidase promoter. Blood 5:321a.Google Scholar
  49. 49.
    Nuchprayoon I, Meyers S, Scott LM, Suzow J, Hiebert S, Friedman AD (1994). PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2β/CBFβ proto-oncoproteins, regualtes the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol Cell Biol 14:5558.PubMedGoogle Scholar
  50. 50.
    Zhang D-E, Fujioka K-I, Hetherington CJ, Shapiro LH, Chen H-M, Look AT, Tenen DG (1994). Identification of a region which directs the monocytic activity of the colony-stimulating factor 1(macrophage colony-stimulating factor) receptor promoter and binds PEBP2/CBF (AML1). Mol Cell Biol 14:8085.PubMedGoogle Scholar
  51. 51.
    Matsuoka R, Yoshida MC, Furutani Y, Imamura S-, Kanda N, Yanagisawa M, Masaki T, Takao A (1993). Human smooth muscle myosin heavy chain gene mapped to chromosomal region 16q12. Am J Med Genet 46:61.PubMedCrossRefGoogle Scholar
  52. 52.
    Grignani F, Ferrucci PF, Testa U, Talamo G, Fagioli M, Alcalay M, Mencarelli A, Peschle C, Nicoletti I, Pelicci PG (1993). The acute promyelocytic leukemia-specific PML-RARA fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell 74:423.PubMedCrossRefGoogle Scholar
  53. 53.
    Fu S, Consoli U, Hanania EG, Zu Z, Claxton D, Andreef M, Deisseroth AB (1994). PML-RARA, a fusion protein in acute promyelocytic leukemia, prevents growth factor withdrawal-induced apoptosis in TF-1 cells. Blood 84 (abstract).Google Scholar
  54. 54.
    Dyck JA, Maul GG, Miller WH Jr, Chen JD, Kakizuka A, Evans RM (1994). A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 76:333.PubMedCrossRefGoogle Scholar
  55. 55.
    Weis K, Rambaud S, Lavau C, Jansen J, Carvalho T, Carmo-Fonseca M, Lamond A, Dejean A (1994). Retinoic acid regulates aberrant nuclear localization of PML-RARA in acute promyelocytic leukemia cells. Cell 76:345.PubMedCrossRefGoogle Scholar
  56. 56.
    Mu Z-M, Chin K-V, Liu J-H, Lozano G, Chang K-S (1994). PML, a growth suppressor disrupted in acute promyelocytic leukemia. Mol Cell Biol 14:6858.PubMedGoogle Scholar
  57. 57.
    Chen Z, Guidez F, Rousselot P, Agadir A, Chen S-J, Wang Z-Y, Degos L, Zelent A, Waxman S, Chomienne C (1994). PLZF-RARA fusion proteins generated from the variant t(11;17)(q23;q21) translocation in acute promyelocytic leukemia inhibit ligand-dependent transactivation of wild-type retinoic acid receptors. Proc Natl Acad Sci USA 91:1178.PubMedCrossRefGoogle Scholar
  58. 58.
    Sakakura C, Yamaguchi-Iwai Y, Satake M, Bae S-C, Takahashi A, Ogawa E, Hagiwara A, Takahashi T, Murakami A, Makino K, Nakagawa T, Kamada N, Ito Y (1994). Growth inhibition and induction of differentiation of t(8;21) acute myeloid leukemia cells by the DNA-binding domain of PEBP2 and the AML1/MTG8(ETO)-specific antisense oligonucleotide. Proc Natl Acad Sci USA 91:11723.PubMedCrossRefGoogle Scholar
  59. 59.
    Liu P, Seidel N, Bodine D, Speck N, Tarle S, Collins FS (in press). Acute myeloid leukemia with inv(16) produces a transcription factor with a myosin heavy chain tail. Cold Spring Harbor Symp Quant Biol.Google Scholar
  60. 60.
    Haira A, Liu PP, Wang Q, Kelley CA, Stacy T, Adelstein RS, Speck NA, Collins FS (in press). The leukemic core binding factor (CBFβ) smooth muscle myosin heavy chain chimeric protein requires both CBFβ and myosin heavy chain domains for transformation of NIH373 cells. Proc Natl Acad Sci 92.Google Scholar
  61. 61.
    Friedman AD, Liu P, Britos-Bray M, Kelly C, Adelstein R, Speck NA, Collins FS (1994). The FAB M4EO AML oncoprotein CBFB-MYH11 reduces the DNA binding of PEBP2A and induces apoptosis in 32Dc13 myeloid cells. Blood 84:374a (abstract).Google Scholar
  62. 62.
    Rabbitts TH (1994). Chromosomal translocation in human cancer. Nature 372:143.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers, Boston 1996

Authors and Affiliations

  • David F. Claxton
  • Paula Marlton
  • Michael J. Siciliano

There are no affiliations available

Personalised recommendations