Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 83))

Abstract

The prevailing view of cancer is that it is a disease resulting from a number of sequential mutations in critical growth regulatory genes [1]. In the past 20 years it has been discovered that retroviral transforming genes, oncogenes, were actually modified growth regulatory genes derived from the viral host genome. In all cases the modifications in the viral oncogene yielded a growth regulatory gene that exhibited enhanced or unregulated activity when compared with its normal cellular counterpart. Growth regulatory genes may act to enhance or inhibit growth and encompass transactivators, including the steroid/retinoid/thyroid hormone receptors, cell cycle regulators, tumor suppressors, growth factors, and growth factor receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fearon E, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61: 759–767.

    Article  PubMed  CAS  Google Scholar 

  2. Luscher B, Eisenman RN (1990) New light on Myc and Myb. Part 1. Myc. Genes Dev 4: 2025–2035.

    Article  PubMed  CAS  Google Scholar 

  3. Amati B, Brooks MW, Levy N, Littlewood TD, Evan GI, Land H (1993) Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell 72: 233–245.

    Article  PubMed  CAS  Google Scholar 

  4. Blackwood EM, Luscher B, Kretzner L, Eisenman RN (1991) The Myc: Max protein complex and cell growth regulation. Cold Spring Harb Symp Quant Biol 56: 109–117.

    PubMed  CAS  Google Scholar 

  5. Prendergast GC, Ziff EB (1991) Methylation-sensitive sequence-specific DNA binding by the c-myc basic region. Science 251: 186–189.

    Article  PubMed  CAS  Google Scholar 

  6. Blackwood EM, Eisenman RN (1991) Max: A helix-loop-helix zipper protein that forms a sequence-specific DNA binding complex with Myc. Science 251: 1211–1217.

    Article  PubMed  CAS  Google Scholar 

  7. Hunter T, Pines J (1994) Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age [see comments]. Cell 79: 573–582.

    Article  PubMed  CAS  Google Scholar 

  8. Nevins JR (1995) Cell cycle control and oncogenesis (abstr). Proc Am Assoc Cancer Res 36: 685.

    Google Scholar 

  9. Reisman D, Elkind NB, Roy B, Beamon J, Rotter V (1993) c-Myc trans-activates the p53 promoter through a required downstream CACGTG motif. Cell Growth Differ 4: 57–65.

    PubMed  CAS  Google Scholar 

  10. Penn LJ, Brooks MW, Laufer EM, Land H (1990) Negative autoregulation of c-myc transcription. EMBO J 9: 1113–1121.

    PubMed  CAS  Google Scholar 

  11. Dubik D, Shiu RP (1988) Transcriptional regulation of c-myc oncogene expression by estrogen in hormone-responsive human breast cancer cells. J Biol Chem 263: 12705–12708.

    PubMed  CAS  Google Scholar 

  12. Watson PH, Safneck JR, Le K, Dubik D, Shiu RP (1993) Relationship of c-myc amplification to progression of breast cancer from in site to invasive tumor and lymph node metastasis. J Natl Cancer Inst 85: 902–907.

    Article  PubMed  CAS  Google Scholar 

  13. Borg A, Baldetorp B, Ferno M, Olsson H, Sigurdsson H (1992) c-myc amplification is an independent prognostic factor in postmenopausal breast cancer. Int J Cancer 51: 687–691.

    Article  PubMed  CAS  Google Scholar 

  14. Berns EM, Klijn JG, van Putten WL, van Staveren IL, Partengen H, Foekens JA (1992) c-myc amplification is a better prognostic factor than HER2/neu amplification in primary breast cancer. Cancer Res 52: 1107–4113.

    PubMed  CAS  Google Scholar 

  15. Varley JM, Wainwright AM, Brammar WJ (1987) An unusual alteration in c-myc in tissue from a primary breast carcinoma. Oncogene 1: 431–438.

    PubMed  CAS  Google Scholar 

  16. Stewart TA, Pattenfale PK, Leder P (1984) Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MMTV/myc fusion genes. Cell 38: 627–637.

    Article  PubMed  CAS  Google Scholar 

  17. Leder A, Pattengale PK, Kuo O, Stewart TA, Leder P (1986) Consequences of widespread deregulation of the c-myc gene in transgenic mice: Multiple neoplasms and normal development. Cell 45: 485–495.

    Article  PubMed  CAS  Google Scholar 

  18. Schoenenberger C, Andres A, Groner B, van der Valk M, LeMeur M, Gerlinger P (1988) Targeted c-myc gene expression in mammary glands of transgenic mice induces mammary tumours with constitutive milk protein gene transcription. EMBO J 7: 169–175.

    PubMed  CAS  Google Scholar 

  19. Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P (1987) Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: Synergistic action of oncogenes in vivo. Cell 49: 465–475.

    Article  PubMed  CAS  Google Scholar 

  20. Luscher B, Kuenzel EA, Krebs EG, Eisenman RN (1989) Myc oncoproteins are phosphory-lated by casein kinase II. EMBO J 8: 1111–1119.

    PubMed  CAS  Google Scholar 

  21. Seldin DC, Leder P (1995) Casein kinase IIa transgene-induced murine lymphoma: Relation to theileriosis in cattle. Science 267: 894–896.

    Article  PubMed  CAS  Google Scholar 

  22. Davidson NE, Prestigiacomo LJ, Hahm HA (1993) Induction of jun gene family members by transforming growth factor alpha but not 17 beta-estradiol in human breast cancer cells. Cancer Res 53: 291–297.

    PubMed  CAS  Google Scholar 

  23. Doucas V, Spyrou G, Yaniv M (1991) Unregulated expression of c-Jun or c-Fos proteins but not Jun D inhibits oestrogen receptor activity in human breast cancer derived cells. EMBO J 10: 2237–2245.

    PubMed  CAS  Google Scholar 

  24. O’Shea E, Rutkowski R, Stafford W, Kim P (1989) Preferential heterodimer formation by isolated leucine zippers forn Fos and Jun, Science 245: 646–648.

    Article  PubMed  Google Scholar 

  25. Chui R, Boyle W, Meek J, Smeal T, Hunter T, Karin M (1988) The c-Fos protein interacts with c-Jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell 54: 541–552.

    Article  Google Scholar 

  26. Musgrove EA, Lee CS, Sutherland RL (1991) Progestins both stimulate and inhibit breast cancer cell cycle progression while increasing expression of transforming growth factor alpha, epidermal growth factor receptor, c-fos, and c-myc genes. Mol Cell Biol 11: 5032–5043.

    PubMed  CAS  Google Scholar 

  27. Alkhalaf M, Murphy LC (1992) Regulation of c-jun and jun-B by progestins in T-47D human breast cancer cells. Mol Endocrinol 6: 1625–1633.

    Article  PubMed  CAS  Google Scholar 

  28. Wosikowski K, Eppenberger U, Kung W, Nagamine Y, Mueller H (1992) c-fos, c-jun and c-myc expressions are not growth rate limiting for the human MCF-7 breast cancer cells. Biochem Biophys Res Commun 188: 1067–1076.

    Article  PubMed  CAS  Google Scholar 

  29. Miao GG, Curran T (1995) Cell transformation by c-fos requires and extended period of expression and is independent of the cell cycle. Mol Cell Biol 14: 4295–1310.

    Google Scholar 

  30. Hilberg F, Wagner EF (1992) Embryonic stem (ES) cells lacking functional c-jun: Consequences for growth and differentiation, AP-1 activity and tumorigenicity. Oncogene 7: 2371–2380.

    PubMed  CAS  Google Scholar 

  31. Randall SJ, Johnson RS, Mortensen RM, Papaioannou VE, Speigelman BM, Greenberg ME (1992) Growth and differentiation of embryonic stem cells that lack an intact c-fos gene. Proc Natl Acad Sci USA 89: 9306–9310.

    Article  Google Scholar 

  32. Johnson RS, van Lingen B, Papaioannou VE, Speigelman BM (1993) A null mutation at the c-jun locus causes embryonic lethality and retarded cell growth in culture. Genes Dev 7: 1309–1317.

    Article  PubMed  CAS  Google Scholar 

  33. Sommers CL, Skerker JM, Chrysogelos SA, Bosseier M, Gelmann EP (1994) Regulation of vimentin gene transcription in human breast cancer cell lines. Cell Growth Differ 5: 839–846.

    PubMed  CAS  Google Scholar 

  34. Thompson EW, Paik S, Brunner N, Sommers CL, Zugmaier G, Clarke R, Shima TB, Toni J, Donahue S, Lippman ME, et al. (1992) Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 150: 534–544.

    Article  PubMed  CAS  Google Scholar 

  35. Luscher B, Eisenman RN (1990) New light on Myc and Myb. Part II. Myb. Genes Dev 4: 2235–2241.

    Article  PubMed  CAS  Google Scholar 

  36. Guerin M, Sheng ZM, Andrieu N, Riou G (1990) Strong association between c-myb and oestrogen-receptor expression in human breast cancer. Oncogene 5: 131–135.

    PubMed  CAS  Google Scholar 

  37. Foos G, Grimm S, Klempnauer KH (1994) The chicken A-myb protein is a transcriptional activator. Oncogene 9: 2481–2488.

    PubMed  CAS  Google Scholar 

  38. Lam EW, Robinson C, Watson RJ (1992) Characterization and cell cycle-regulated expression of mouse B-myb. Oncogene 7: 1885–1890.

    PubMed  CAS  Google Scholar 

  39. Nakagoshi H, Kanei Ishii C, Sawazaki T, Mizuguchi G, Ishii S (1992) Transcriptional activation of the c-myc gene by the c-myb and B-myb gene products. Oncogene 7: 1233–1240.

    PubMed  CAS  Google Scholar 

  40. Watson RJ, Robinson C, Lam EW (1993) Transcription regulation by murine B-myb is distinct from that by c-myb. Nucleic Acids Res 21: 267–272.

    Article  PubMed  CAS  Google Scholar 

  41. Calabretta B, Nicolaides NC (1992) c-myb and growth control. Crit Rev Eukaryot Gene Expr 2: 225–235.

    PubMed  CAS  Google Scholar 

  42. Nicolaides NC, Correa I, Casadevall C, Travali S, Soprano KJ, Calabretta B (1992) The Jun family members, c-Jun and JunD, transactivate the human c-myb promoter via an Apl-like element. J Biol Chem 267: 19665–19672.

    PubMed  CAS  Google Scholar 

  43. Runnebaum IB, Nagarajan M, Bowman M, Soto D, Sukumar S (1991) Mutations in p53 as potential molecular markers for human breast cancer. Proc Natl Acad Sci USA 88: 10657–10661.

    Article  PubMed  CAS  Google Scholar 

  44. Runnebaum IB, Yee JK, Kieback DG, Sukumar S, Friedmann T (1994) Wild-type p53 suppresses the malignant phenotype in breast cancer cells containing mutant p53 alleles. Anticancer Res 14: 1137–1144.

    PubMed  CAS  Google Scholar 

  45. Eyfjord JE, Thorlacius S, Steinarsdottir M, Valgardsdottir R, Ogmundsdottir HM, Amanthawat-Jonnson K (1995) p53 abnormalities and genomic instability in primary human breast carcinomas. Cancer Res 55: 646–651.

    PubMed  CAS  Google Scholar 

  46. Hoffman B, Leibermann DA (1994) Molecular controls of apoptosis: Differentiation/growth arrest primary response genes, protooncogenes, and tumor suppressor genes as positive & negative modulators. Oncogene 9: 1807–1812.

    PubMed  CAS  Google Scholar 

  47. Wang NP, To H, Lee WH, Lee EY (1993) Tumor suppressor activity of RB and p53 genes in human breast carcinoma cells. Oncogene 8: 279–288.

    PubMed  CAS  Google Scholar 

  48. Schwarz JK, Devoto SH, Smith EJ, Chellappan SP, Jakoi L, Nevins JR (1993) Interactions of the pl07 and Rb proteins with E2F during the cell proliferation response. EMBO J 12: 1013–1020.

    PubMed  CAS  Google Scholar 

  49. Cobrinik D, Whyte P, Peeper DS, Jacks T, Weinberg RA (1993) Cell cycle-specific association of E2F with the pl30 E1A-binding protein. Genes Dev 7: 2392–2404.

    Article  PubMed  CAS  Google Scholar 

  50. Sardet C, Vidal M, Cobrinik D, Geng Y, Onufryk C, Chen A, Weinberg RA (1995) E2F-4 and E2F-5, two members of the E2F family, are expressed in the early phases of the cell cycle. Proc Natl Acad Sci USA 92: 2403–2407.

    Article  PubMed  CAS  Google Scholar 

  51. Jansen Durr P, Meichle A, Steiner P, Pagano M, Finke K, Botz J, Wessbecher J, Draetta G, Eilers M (1993) Differential modulation of cyclin gene expression by MYC. Proc Natl Acad Sci USA 90: 3685–3689.

    Article  PubMed  CAS  Google Scholar 

  52. Oswald F, Lovec H, Moroy T, Lipp M (1994) E2F-dependent regulation of human MYC: Trans-activation by cyclins D1 and A overrides tumour suppressor protein functions. Oncogene 9: 2029–2036.

    PubMed  CAS  Google Scholar 

  53. Topper YJ, Freeman CS (1980) Multiple hormone interactons in the developmental biology of the mammary gland. Physiol Rev 60: 1049–1106.

    PubMed  CAS  Google Scholar 

  54. Wilhelm MC, Wanebo HJ (1991) Cancer of the male breast. In The Breast: Comprehensive Management of Benign and Malignant Diseases. KI Bland, EM Copeland (eds). Philadelphia: W.B. Saunders, pp 1030–1033.

    Google Scholar 

  55. Mant D, Vessey MP (1995) Epidemiology and primary prevention of breast cancer. In The Breast: Comprehensive Management of Benign and Malignant Diseases. KI Bland, EM Copeland (eds). Philadelphia: W.B. Saunders, pp 235–261.

    Google Scholar 

  56. Dubik D, Watson PH, Shiu RPC (1994) Estrogen, c-myc, and the breast In Protooncogenes and Growth Factors in Steroid Hormone Induced Growth and Differentiation. SA Khan, GM Stancel (eds). Boca Raton, FL: CRC Press, pp 175–186.

    Google Scholar 

  57. McGuire WL (1980) Steroid hormone receptors in breast cancer treatment strategy. Recent Prog Horm Res 36: 135–145.

    PubMed  CAS  Google Scholar 

  58. Dubik D, Dembinski TC, Shiu RP (1987) Stimulation of c-myc oncogene expression associated with estrogen-induced proliferation of human breast cancer cells. Cancer Res 47: 6517–6521.

    PubMed  CAS  Google Scholar 

  59. Gudas JM, Klein RC, Oka M, Cowan KH (1995) Posttranscriptional regulation of the c-myb proto-oncogene in estrogen receptor-positive breast cancer cells. Clin Cancer Res 1: 235–243.

    PubMed  CAS  Google Scholar 

  60. Weisz A, Bresciani F (1993) Estrogen regulation of proto-oncogenes coding for nuclear proteins. Crit Rev Oncog 4: 361–388.

    PubMed  CAS  Google Scholar 

  61. Dubik D, Shiu RP (1992) Mechanism of estrogen activation of c-myc oncogene expression. Oncogene 7: 1587–1594.

    PubMed  CAS  Google Scholar 

  62. Watson PH, Pon RT, Shiu RPC (1991) Inhibition of c-myc expression by phosphorothioate antisense oligonucleotide identifies a critical role for c-myc in the growth of human breast cancer. Cancer Res 51: 3996–000.

    PubMed  CAS  Google Scholar 

  63. Gaub MP, Bellard M, Scheuer I, Chambon P, Sassone Corsi P (1990) Activation of the ovalbumin gene by the estrogen receptor involves the fos-jun complex. Cell 63: 1267–1276.

    Article  PubMed  CAS  Google Scholar 

  64. Halachmi S, Marden E, Martin G, MacKay H, Abbondanza C, Brown M (1994) Estrogen receptor-associated proteins: Possible mediators of hormone-induced transcription. Science 264: 1455–1458.

    Article  PubMed  CAS  Google Scholar 

  65. Baniahmad C, Nawaz Z, Banianhman A, Gleeson MAG, Tsai M, O’Malley BW (1995) Enhancement of human estrogen receptor activity by SPT6: A potential coactivator. Mol Endocrinol 9: 34–43.

    Article  PubMed  CAS  Google Scholar 

  66. Xu G, Livingston DM, Krek W (1995) Multiple members of the E2F transcription factor family are the products of oncogenes. Proc Natl Acad Sci USA 92: 1357–1361.

    Article  PubMed  CAS  Google Scholar 

  67. Hiebert SW, Blake M, Azizkhan J, Nevins JR (1991) Role of E2F transcription factor in ElA-mediated trans activation of cellular genes. J Virol 65: 3547–3552.

    PubMed  CAS  Google Scholar 

  68. Kuiper GG, Brinkmann AO (1994) Steroid hormone receptor phosphorylation: Is there a physiological role? Mol Cell Endocrinol 100: 103–107.

    Article  PubMed  CAS  Google Scholar 

  69. Denton RR, Koszewski NJ, Notides AC (1992) Estrogen receptor phosphorylation. J Biol Chem 267: 7263–7268.

    PubMed  CAS  Google Scholar 

  70. Migliaccio A, Pagano M, Auricchio F (1993) Immediate and transient stimulation of protein tyrosine phosphorylation by estradiol in MCF-7 cells. Oncogene 8: 2183–2191.

    PubMed  CAS  Google Scholar 

  71. Baldi A, Boyle DM, Wittliff JL (1986) Estrogen receptor is associated with protein and phospholipid kinase activity. Biochem Biophys Res Commun 135: 597–606.

    Article  PubMed  CAS  Google Scholar 

  72. Piaca GA, Abbondaza C, Nigro C, Armetta I, Medici N, Molinari AM (1986) Estrogen receptor has proteolytic activity that is responsible for its own transformation. Proc Natl Acad Sci USA 83: 5367–5371.

    Article  Google Scholar 

  73. Weisz A, Rosales R (1990) Identification of an estrogen response element upstream of the human c-fos gene that binds the estrogen receptor and the AP-1 transcription factor. Nucleic Acids Res 18: 5097–5106.

    Article  PubMed  CAS  Google Scholar 

  74. Hyder SM, Stancel GM, Nawaz Z, McDonnell DP, Loose Mitchell DS (1992) Identification of an estrogen response element in the 3’-flanking region of the murine c-fos protooncogene. J Biol Chem 267: 18047–18054.

    PubMed  CAS  Google Scholar 

  75. Augereau P, Miralies F, Cavaillès V, Gaudelet C, Parker M, Rochefort H (1994) Characterization of the proximal estrogen-responsive element of human cathepsin D gene. Mol Endocrinol 8: 693–703.

    Article  PubMed  CAS  Google Scholar 

  76. Kraus WL, Montano MM, Katzenellenbogen BS (1994) Identification of multiple, widely spaced estrogen-responsive regions in the rat progesterone receptor gene. Mol Endocrinol 8: 952–969.

    Article  PubMed  CAS  Google Scholar 

  77. Wu Peng XS, Pugliese TE, Dickerman HW, Pentecost BT (1992) Delineation of sites mediating estrogen regulation of the rat creatine kinase B gene. Mol Endocrinol 6: 231–240.

    Article  PubMed  CAS  Google Scholar 

  78. Wilding G, Lippman ME, Gelmann EP (1988) Effects of steroid hormones and peptide growth factors on protooncogene c-fos expression in human breast cancer cells. Cancer Res 48: 802–808.

    PubMed  CAS  Google Scholar 

  79. Lin D, Fiscella M, O’Connor PM, Jackman J, Chen M, Luo LL, Sala A, Travali S, Appella E, Mercer WE (1994) Constitutive expression of B-myb can bypass p53-induced Waf1/Cipl-mediated Gl arrest. Proc Natl Acad Sci USA 91: 10079–10083.

    Article  PubMed  CAS  Google Scholar 

  80. Santen RJ, Manni A, Harvey H, Redmond C (1990) Endocrine treatment of breast cancer in women. Endocr Rev 11: 221–265.

    Article  PubMed  CAS  Google Scholar 

  81. Murphy LC, Alkhalaf M, Dotzlaw H, Coutts A, Haddad Alkhalaf B (1994) Regulation of gene expression in T-47D human breast cancer cells by progestins and antiprogestins. Hum Reprod 9(Suppl 1): 174–180.

    PubMed  Google Scholar 

  82. Musgrove EA, Hamilton JA, Lee CS, Sweeney KJ, Watts CK, Sutherland RL (1993) Growth factor, steroid, and steroid antagonist regulation of cyclin gene expression associated with changes in T-47D human breast cancer cell cycle progression. Mol Cell Biol 13: 3577–3587.

    PubMed  CAS  Google Scholar 

  83. Li XS, Chen JC, Sheikh MS, Shao ZM, Fontana JA (1994) Retinoic acid inhibition of insulinlike growth factor I stimulation of c-fos mRNA levels in a breast carcinoma cell line. Exp Cell Res 211: 68–73.

    Article  PubMed  CAS  Google Scholar 

  84. Sheikh MS, Shao ZM, Chen JC, Ordonez JV, Fontana JA (1993) Retinoid modulation of c-myc and max gene expression in human breast carcinoma. Anticancer Res 13: 1387–1392.

    PubMed  CAS  Google Scholar 

  85. Chrysogelos SA, Dickson RB (1994) EGF receptor expression, regulation, and function in breast cancer. Breast Cancer Res Treat 29: 29–40.

    Article  PubMed  CAS  Google Scholar 

  86. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80: 179–185.

    Article  PubMed  CAS  Google Scholar 

  87. Leinhard GE (1994) Life without the IRS. Nature 372: 128–129.

    Article  Google Scholar 

  88. Sutherland RL, Lee CS, Feldman RS, Musgrove EA (1992) Regulation of breast cancer cell cycle progression by growth factors, steroids and steroid antagonists. J Steroid Biochem Mol Biol 41: 315–321.

    Article  PubMed  CAS  Google Scholar 

  89. Westwick JK, Cox AD, Der CJ, Cobb MH, Hibi M, Karin M, Brenner DA (1994) Oncogenic Ras activates c-Jun via a separate pathway from the activation of extracellular signal-regulated kinases. Proc Natl Acad Sci USA 91: 6030–6034.

    Article  PubMed  CAS  Google Scholar 

  90. Hipskind RA, Buscher D, Nordheim A, Baccarini M (1994) Ras/MAP kinase-dependent and -independent signaling pathways target distinct ternary complex factors. Genes Dev 8: 1803–1816.

    Article  PubMed  CAS  Google Scholar 

  91. Janknecht R, Ernst WH, Pingoud V, Nordheim A (1993) Activation of ternary complex factor Elk-1 by MAP kinases. EMBO J 12: 5097–5104.

    PubMed  CAS  Google Scholar 

  92. Marais R, Wynne J, Treisman R (1993) The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73: 381–393.

    Article  PubMed  CAS  Google Scholar 

  93. Minden A, Lin A, Smeal T, Derijard B, Cobb M, Davis R, Karin M (1994) c-Jun N-terminal phosphorylation correlates with activation of the JNK subgroup but not the ERK subgroup of mitogen-activated protein kinases. Mol Cell Biol 14: 6683–6688.

    PubMed  CAS  Google Scholar 

  94. Sluss HK, Barrett T, Derijard B, Davis RJ (1994) Signal transduction by tumor necrosis factor mediated by JNK protein kinases. Mol Cell Biol 14: 8376–8384.

    PubMed  CAS  Google Scholar 

  95. Abate C, Baker SJ, Lees Miller SP, Anderson CW, Marshak DR, Curran T (1993) Dimerization and DNA binding alter phosphorylation of Fos and Jun. Proc Natl Acad Sci USA 90: 6766–6770.

    Article  PubMed  CAS  Google Scholar 

  96. Deng T, Karin M (1994) c-Fos transcriptional activity stimulated by H-Ras-activated protein kinase distinct from JNK and ERK. Nature 371: 171–175.

    Article  PubMed  CAS  Google Scholar 

  97. Gupta S, Seth A, Davis RJ (1993) Transactivation of gene expression by Myc is inhibited by mutation at the phosphorylation sites Thr-58 and Ser-62. Proc Natl Acad Sci USA 90: 3216–3220.

    Article  PubMed  CAS  Google Scholar 

  98. Lutterbach B, Hann SR (1994) Hierarchical phosphorylation at N-terminal transformation-sensitive sites in c-Myc protein is regulated by mitogens and in mitosis. Mol Cell Biol 14: 5510–5522.

    PubMed  CAS  Google Scholar 

  99. Pulverer BJ, Fisher C, Vousden K, Littlewood T, Evan G, Woodgett JR (1994) Site-specific modulation of c-Myc cotransformation by residues phosphorylated in vivo. Oncogene 9: 59–70.

    PubMed  CAS  Google Scholar 

  100. Hagiwara T, Nakaya K, Nakamura Y, Nakajima H, Nishimura S, Taya Y (1992) Specific phosphorylation of the acidic central region of the N-myc protein by casein kinase II. Eur J Biochem 209: 945–950.

    Article  PubMed  CAS  Google Scholar 

  101. Berberich SJ, Cole MD (1992) Casein kinase II inhibits the DNA-binding activity of Max homodimers but not Myc/Max heterodimers. Genes Dev 6: 166–176.

    Article  PubMed  CAS  Google Scholar 

  102. Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J, Roberts JM, Koff A (1994) p27Kipl, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 8: 9–22.

    Article  PubMed  CAS  Google Scholar 

  103. Osborne CK, Clemmons DR, Arteaga CL (1990) Regulation of breast cancer growth by insulin-like growth factors. J Steroid Biochem Mol Biol 37: 805–809.

    Article  PubMed  CAS  Google Scholar 

  104. Daksis JI, Lu RY, Facchini LM, Marhin WW, Penn LJ (1994) Myc induces cyclin Dl expression in the absence of de novo protein synthesis and links mitogen-stimulated signal transduction to the cell cycle. Oncogene 9: 3635–3645.

    PubMed  CAS  Google Scholar 

  105. Philipp A, Schneider A, Vasrik I, Finke K, Xiong Y, Beach D, Alitalo K, Eilers M (1994) Repression of cyclin Dl: A novel function of MYC. Mol Cell Biol 14: 4032–4043.

    PubMed  CAS  Google Scholar 

  106. Gaubatz S, Meichle A, Eilers M (1994) An E-box element localized in the first intron mediates regulation of the prothymosin alpha gene by c-myc. Mol Cell Biol 14: 3853–3862.

    PubMed  CAS  Google Scholar 

  107. Eilers M, Schirm S, Bishop JM (1991) The MYC protein activates transcription of the alpha-prothymosin gene. EMBO J 10: 133–141.

    PubMed  CAS  Google Scholar 

  108. Li LH, Nerlov C, Prendergast G, MacGregor D, Ziff EB (1994) c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO J 13: 4070–4079.

    PubMed  CAS  Google Scholar 

  109. Mai S, Jalava A (1994) c-Myc binds to 5’ flanking sequence motifs of the dihydrofolate reductase gene in cellular extracts; Role in proliferation. Nucleic Acids Res 22: 2264–2273.

    Article  PubMed  CAS  Google Scholar 

  110. Bello-Fernandez C, Packham G, Cleveland JL (1993) The ornithine decarboxylase gene is a transcriptional target of c-MYC. Proc Natl Acad Sci USA 90: 7804–7808.

    Article  PubMed  CAS  Google Scholar 

  111. Pena A, Reddy CD, Wu S, Hickok NJ, Reddy EP, Yumet G, Soprano DR, Soprano KJ (1993) Regulation of human ornithine decarboxylase expression by the c-Myc. Max protein complex. J Biol Chem 268: 27277–27285.

    PubMed  CAS  Google Scholar 

  112. Benvenisty N, Leder A, Kuo A, Leder P (1992) An embryonically expressed gene is a target for c-Myc regulation via the c-Myc-binding sequences. Genes Dev 6: 2513–2523.

    Article  PubMed  CAS  Google Scholar 

  113. Suen TC, Hung MC (1991) c-myc reverses neu-induced transformed morphology by transcriptional repression. Mol Cell Biol 11: 354–362.

    PubMed  CAS  Google Scholar 

  114. Akeson R, Bernards R (1990) N-myc down regulates neural cell adhesion molecule expression in rat neuroblastoma. Mol Cell Biol 10: 2012–2016.

    PubMed  CAS  Google Scholar 

  115. Versteeg R, Noordermeer IA, Kruse-Wolters M, Ruiter DJ, Schrier PI (1988) c-myc down-regulates class I HLA expression in human melanomas. EMBO J 7: 1023–1039.

    PubMed  CAS  Google Scholar 

  116. Inghirami G, Grignani F, Sternas L, Lombardi L, Knowles DM, Dalla Favera R (1990) Down-regulation of LFA-1 adhesion receptors by C-myc oncogene in human B lymphoblastoid cells. Science 250: 682–686.

    Article  PubMed  CAS  Google Scholar 

  117. Shtivelman E, Bishop JM (1991) Expression of CD44 is repressed in neuroblastoma cells. Mol Cell Biol 11: 5446–5453.

    PubMed  CAS  Google Scholar 

  118. Gross N, Beretta C, Peruisseau G, Jackson D, Simmons D, Beck D (1994) CD44H expression by human neuroblastoma cells: Relation to MYCN amplification and lineage differentiation. Cancer Res 54: 4238–4242.

    PubMed  CAS  Google Scholar 

  119. Yang BS, Geddes TJ, Pogulis RJ, de Crombrugghe B, Freytag SO (1991) Transcriptional suppression of cellular gene expression by c-Myc. Mol Cell Biol 11: 2291–2295.

    PubMed  CAS  Google Scholar 

  120. Dickinson Laing TMA, Gibson AW, Johnston RN, Edwards DR (1995) Role of c-myc in regulation of gelationase B expression (abstr). Proc Am Assoc Cancer Res 36: 97.

    Google Scholar 

  121. Prendergast GC, Cole MD (1989) Posttranscriptional regulation of cellular gene expression by the c-myc oncogene. Mol Cell Biol 9: 124–134.

    PubMed  CAS  Google Scholar 

  122. Prendergast GC, Diamond LE, Dahl D, Cole MD (1990) The c-myc-regulated gene mrl encodes plasminogen activator inhibitor 1. Mol Cell Biol 10: 1265–1269.

    PubMed  CAS  Google Scholar 

  123. Wasfy G, Marhin W, Lu R, Daksis J, Penn LJZ (1995) Cloning and identification of Myc-regulated genes (abstr). Proc Am Assoc Cancer Res 36: 521.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Dubik, D., Watson, P.H., Venditti, M., Shiu, R.P.C. (1996). Nuclear oncogenes in breast cancer. In: Dickson, R.B., Lippman, M.E. (eds) Mammary Tumor Cell Cycle, Differentiation, and Metastasis. Cancer Treatment and Research, vol 83. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1259-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1259-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8536-6

  • Online ISBN: 978-1-4613-1259-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics