Skip to main content

Tissue reconstitution, or transgenic mammary gland, technique for modeling breast cancer development

  • Chapter
Mammary Tumor Cell Cycle, Differentiation, and Metastasis

Part of the book series: Cancer Treatment and Research ((CTAR,volume 83))

Abstract

Breast cancer appears to develop as a result of clones of cells accumulating a series of mutations. To model this process, we [1–9] and others [10–13] have introduced tumor mutations into individual clones of cells in mouse mammary epithelium, in mice, by a transplantation approach known as tissue reconstitution or constructing a transgenic mammary gland. Introducing oncogenes and growth factor genes in this way has shown how the three-dimensional growth pattern of mammary epithelium is altered by such genes and allows us to address basic questions, such as: What does an individual oncogene do to three-dimensional growth control? Do related oncogenes have similar or different effects? How do the effects of oncogenes relate to their normal role in controlling the three-dimensional growth pattern? How do clones of cells that express an oncogene behave among neighboring normal cells in an epithelium? The method also allows sequential introduction of more than one oncogene to follow tumor development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abram CL, Bradbury JM, Page MJ, Edwards PAW (1995) v-erbB induces abnormal patterns of growth in mammary epithelium. In Intercellular Signalling in the Mammary Gland. CJ Wilde, CH Knight, M Peaker (eds). New York: Plenum, pp 67–68.

    Chapter  Google Scholar 

  2. Bradbury JM, Sykes H, Edwards PAW (1991) Induction of mouse mammary tumours in a transplantation system by sequential introduction of the myc and ras oncogenes. Int J Cancer 48:908–915.

    Article  PubMed  CAS  Google Scholar 

  3. Bradbury JM, Arno J, Edwards PAW (1993) Induction of epithelial abnormalities that resemble human breast lesions by the expression of the neu/erbB2 oncogene in reconstituted mouse mammary gland. Oncogene 8:1551–1558.

    PubMed  CAS  Google Scholar 

  4. Bradbury JM, Edwards PAW, Niemeyer CC, Dale TC (1995) Wnt-4 expression induces a pregnancy-like growth pattern in reconstituted mammary glands in virgin mice. Dev Biol 170:553–563.

    Article  PubMed  CAS  Google Scholar 

  5. Edwards PAW (1993) Tissue reconstitution models of breast cancer. Cancer Surv 16:79–96.

    PubMed  CAS  Google Scholar 

  6. Edwards PAW, Ward JL, Bradbury JM (1988) Alteration of morphogenesis by the v-myc oncogene in transplants of mouse mammary gland. Oncogene 2:407–412.

    PubMed  CAS  Google Scholar 

  7. Edwards PAW, Hiby SE, Papkoff J, Bradbury JM (1992) Hyperplasia of mouse mammary epithelium induced by expression of the Wnt-1 (int-1) oncogene in reconstituted mammary gland. Oncogene 7:2041–2051.

    PubMed  CAS  Google Scholar 

  8. Edwards PAW, Abram CL, Bradbury JM (1995) Genetic manipulation of mammary epithelium by transplantation. J Mammary Gland Biology and Neoplasia 1:75–90.

    Article  Google Scholar 

  9. Edwards PAW, Abram CL, Hiby SE, Niemeyer C, Dale TC, Bradbury JM (1995) The role of erbB-family genes and Wnt genes in normal and preneoplastic mammary epithelium, studied by tissue reconstitution. In Intercellular Signalling in the Mammary Gland. CJ Wilde, CH Knight, M Peaker (eds). New York: Plenum, pp 57–66.

    Chapter  Google Scholar 

  10. Aguilar-Cordova E, Strange R, Young LJT, Billy HT, Gumerlock PH, Cardiff RD (1991) Viral Ha-ras mediated mammary tumour progression. Oncogene 6:1601–1607.

    PubMed  CAS  Google Scholar 

  11. Miyamoto S, Guzman RC, Shiurba RA, Firestone GL, Nandi S (1990) Transfection of activated Ha-ras protooncogenes causes mouse mammary hyperplasia. Cancer Res 50:6010–6014.

    PubMed  CAS  Google Scholar 

  12. Smith GH, Gallaghan D, Zweibel JA, Freeman SM, Bassin RH, Callaghan R (1991) Long-term in vivo expression of genes introduced by retrovirus-mediated transfer into mammary epithelial cells. J Virol 65:6365–6370.

    PubMed  CAS  Google Scholar 

  13. Strange R, Aguilar-Cordova E, Young LJT, Billy HT, Dandekar S, Cardiff RD (1989) Harvey-ras mediated neoplastic development in the mouse mammary gland. Oncogene 4:309–315.

    PubMed  CAS  Google Scholar 

  14. Miller AD (1992) Retroviral vectors. Curr Top Microbiol Immunol 158:1–24.

    Article  PubMed  CAS  Google Scholar 

  15. DeOme KB, Faulkin LJ Jr, Bern HA, Blair PB (1959) Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 19:515–520.

    PubMed  CAS  Google Scholar 

  16. Wang B, Kennan WS, Yasukawa-Barnes J, Lindstrom MJ, Gould MN (1991) Carcinoma induction following direct in situ transfer of v-Ha-ras into rat mammary epithelial cells using replication-defective retrovirus vectors. Cancer Res 51:2642–2648.

    PubMed  CAS  Google Scholar 

  17. Wang B, Kennan WS, Yasukawa-Barnes J, Lindstrom MJ, Gould MN (1991) Frequent induction of mammary carcinomas following neu oncogene transfer into in situ mammary epithelial cells of susceptible and resistant rat strains. Cancer Res 51:5649–5654.

    PubMed  CAS  Google Scholar 

  18. Andres AC, van der Walk MA, Schonenberger CA, Fluckiger F, LeMeur M, Gerlinger P, Groner B (1988) Ha-ras and c-myc oncogene expression interferes with morphological and functional differentiation of mammary epithelial cells in single and double transgenic mice. Genes Dev 2:1486–1495.

    Article  PubMed  CAS  Google Scholar 

  19. DanKort DL, Muller WJ (1996) Transgenic models of breast cancer metastasis. In Mammary Tumor Cell Cycle, Differentiation, and Metastasis. RB Dickson, ME Lippman (eds). Boston: Kluwer.

    Google Scholar 

  20. Webster MA, Muller WJ (1994) Mammary tumorigenesis and metastasis in transgenic mice. Semin Cancer Biol 5:69–76.

    PubMed  CAS  Google Scholar 

  21. Stocklin E, Botteri F, Groner B (1993) An activated allele of the c-erbB-2 oncogene impairs kidney and lung function and causes early death of transgenic mice. J Cell Biol 122:199–208.

    Article  PubMed  CAS  Google Scholar 

  22. Ghattas IR, Sanes JR, Majors JE (1991) The encephalomyocarditis virus internal ribosome entry site allows efficient coexpression of two genes from a recombinant provirus in cultured cells and in embryos. Mol Cell Biol 11:5848–5859.

    PubMed  CAS  Google Scholar 

  23. Friedrich G, Soriano P (1991) Promoter traps in embryonic stem cells: A genetic screen to identify and mutate developmental genes in mice. Genes Dev 5:1513–1523.

    Article  PubMed  CAS  Google Scholar 

  24. Dati C, Antoniotti S, Taverna D, Perroteau I, De Bortoli M (1990) Inhibition of c-erbB-2 oncogene expression by estrogens in human breast cancer cells. Oncogene 5:1001–1006.

    PubMed  CAS  Google Scholar 

  25. Varley JM, Walker RA (1993) The molecular pathology of human breast cancer. Cancer Surv 16:31–57.

    PubMed  Google Scholar 

  26. Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P (1988) Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54:105–115.

    Article  PubMed  CAS  Google Scholar 

  27. Bouchard L, Lamarre L, Tremblay PJ, Jolicoeur P (1989) Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell 57:931–936.

    Article  PubMed  CAS  Google Scholar 

  28. Siegel PM, Dankort DL, Hardy WR, Muller WJ (1994) Novel activating mutations in the neu proto-oncogene involved in induction of mammary tumours. Mol Cell Biol 14:7068–7077.

    PubMed  CAS  Google Scholar 

  29. Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE (1988) Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55:619–625.

    Article  PubMed  CAS  Google Scholar 

  30. Lin T-P, Guzman RC, Osborn RC, Thordarson G, Nandi S (1992) Role of endocrine, autocrine and paracrine interactions in the development of mammary hyperplasia in Wnt-1 transgenic mice. Cancer Res 52:4413–4419.

    PubMed  CAS  Google Scholar 

  31. Nusse R, Varmus HE (1992) Wnt genes. Cell 69:1073–1087.

    Article  PubMed  CAS  Google Scholar 

  32. Gavin BJ, McMahon AP (1992) Differentional regulation of the Wnt gene family during pregnancy and lactation suggests a role in post natal development of the mammary gland. Mol Cell Biol 12:2418–2423.

    PubMed  CAS  Google Scholar 

  33. Weber-Hall SJ, Phippard DJ, Niemeyer CC, Dale TC (1994) Developmental and hormonal regulation of Wnt gene expression in the mouse mammary gland. Development 57:205–214.

    CAS  Google Scholar 

  34. Bradbury JM, Niemeyer CC, Dale TC, Edwards PAW (1994) Alterations of the growth characteristics of the fibroblast cell line C3H10T1/2 by members of the Wnt gene family. Oncogene 9:2597–2603.

    PubMed  CAS  Google Scholar 

  35. Parr BA, McMahon AP (1994) Wnt genes and vertebrate development. Curr Opin Genetics Dev 7:2181–2193.

    Google Scholar 

  36. Daniel CW, Silberstein GB, Van Horn K, Strickland P, Robinson S (1989) TGF-β-induced inhibition of mouse mammary ductal growth: Developmental specificity and characterization. Dev Biol 135:20–30.

    Article  PubMed  CAS  Google Scholar 

  37. Ornitz DM, Moreadith W, Leder P (1991) Binary system for regulating trangene expression in mice: Targeting int-2 gene expression with yeast GAL4/UAS control elements. Proc Natl Acad Sci USA 88:698–702.

    Article  PubMed  CAS  Google Scholar 

  38. Sukumar S (1989) ras oncogenes in chemical carcinogenesis. Curr Top Microbiol Immunol 148:93–114.

    PubMed  CAS  Google Scholar 

  39. Gu H, Marth JD, Orban PC, Mossmann H, Rajewsky K (1994) Deletion of a DNA polymerase β gene segment in T cells using cell type-specific gene targetting. Science 265:103–106.

    Article  PubMed  CAS  Google Scholar 

  40. Beddington RSP, Morgernstern J, Land H, Hogan A (1989) An in situ transgenic enzyme marker for the midgestation mouse embryo and the visualization of inner cell mass clones during early organogenesis. Development 106:37–46.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Edwards, P.A.W. (1996). Tissue reconstitution, or transgenic mammary gland, technique for modeling breast cancer development. In: Dickson, R.B., Lippman, M.E. (eds) Mammary Tumor Cell Cycle, Differentiation, and Metastasis. Cancer Treatment and Research, vol 83. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1259-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1259-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8536-6

  • Online ISBN: 978-1-4613-1259-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics