Skip to main content

Stromelysin-3 and other stromelysins in breast cancer: Importance of epithelial-stromal interactions during tumor progression

  • Chapter

Part of the book series: Cancer Treatment and Research ((CTAR,volume 83))

Abstract

Stromelysins belong to the matrix metalloproteinase (MMP, also known as matrixin) family, extracellular proteolytic enzymes that are believed to be physiological mediators of tissue remodeling processes during development, involution, and tissue repair [1,2]. In agreement with this concept, MMPs are capable of degrading most macromolecular components found in or associated with the extracellular matrix (ECM) [1–4]. MMPs have also been implicated in pathological tissue remodeling processes, including those associated with cancer progression [5]. Although it has been proposed that they may be involved in the initiation of oncogenesis [6], MMPs should be better regarded as modulators of cancerous processes, thus contributing to tumor invasion and metastasis [5,7–9].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Woessner JF Jr (1991) Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 5:2145–2146.

    PubMed  CAS  Google Scholar 

  2. Matrisian LM (1992) The matrix-degrading metalloproteinases. Bio Essays 14:455–463.

    CAS  Google Scholar 

  3. Docherty AJP, O’Connell J, Crabbe T, Angal S, Murphy G (1992) The matrix metalloproteinases and their natural inhibitors: Prospects for treating degenerative tissue diseases. Trends Biotechnol 10:200–207.

    Article  PubMed  CAS  Google Scholar 

  4. Birkedal-hansen H, Moore WGI, Bodden MK, Windsor LJ, Birkedal-hansen B, DeCarlo A, Engler JA (1993) Matrix metalloproteinases: A review. Crit Rev Oral Biol Med 4:197–250.

    PubMed  CAS  Google Scholar 

  5. Stetler-stevenson WG, Aznavoorian S, Liotta LA (1993) Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 9:541–573.

    Article  PubMed  CAS  Google Scholar 

  6. Khokka R, Waterhouse P, Lala P, Zimmer M, Denhardt DT (1991) Increased proteinase expression during tumor progression of tissue inhibitor of metalloproteinases cell lines down-modulated for levels: A new transformation paradigm? J Cancer Res Clin Oncol 117:333–338.

    Article  PubMed  Google Scholar 

  7. Duffy MJ (1992) The role of proteolytic enzymes in cancer invasion and metastasis. Clin Exp Metastasis 10:145–155.

    Article  PubMed  CAS  Google Scholar 

  8. Mignatti P, Rifkin DB (1993) Biology and biochemistry of proteinases in tumor invasion. Physiol Rev 73:161–195.

    PubMed  CAS  Google Scholar 

  9. Ponta H, Sleeman J, Herrlich P (1994) Tumor metastasis formation: Cell-surface proteins confer metastasis-promoting or suppressing properties. Biochim Biophys Acta 1198:1–10.

    PubMed  CAS  Google Scholar 

  10. Matrisian LM (1990) Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet 6:121–125.

    Article  PubMed  CAS  Google Scholar 

  11. Basset P, Bellocq JP, Wolf C, Stoll I, Hutin P, Limacher JM, Podhajcer OL, Chenard MP, Rio MC, Chambon P (1990) A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348:699–704.

    Article  PubMed  CAS  Google Scholar 

  12. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M (1994) A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370:61–65.

    Article  PubMed  CAS  Google Scholar 

  13. Gooley PR, Johnson BA, Marcy AI, Cuca GC, Salowe SP, Hagmann WK, Esser CK, Springer JP (1993) Secondary structure and zinc ligation of human recombinant short-form stromelysin by multidimensional heteronuclear NMR. Biochemistry 32:13098–13108.

    Article  PubMed  CAS  Google Scholar 

  14. Jiang W, Bond JS (1992) Families of metalloendopeptidases and their relationships. FEBS Lett 312:110–114.

    Article  PubMed  CAS  Google Scholar 

  15. Bode W, Gomis-Ruth FX, Stöcker W (1993) Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins.’ FEBS Lett 331:134–140.

    Article  PubMed  CAS  Google Scholar 

  16. Hooper NM (1994) Families of zinc metalloproteases. FEBS Lett 354:1–6.

    Article  PubMed  CAS  Google Scholar 

  17. Alexander CM, Werb Z (1991) Extracellular matrix degradation. In Cell Biology of Extracellular Matrix, 2nd ed. ED Hay (ed). New York: Plenum Press, pp 255–302.

    Chapter  Google Scholar 

  18. Nicholson R, Murphy G, Breathnach R (1989) Human and rat malignant-tumor-associated mRNAs encode stromelysin-like metalloproteinases. Biochemistry 28:5195–5203.

    Article  PubMed  CAS  Google Scholar 

  19. Quantin B, Murphy G, Breathnach R (1989) Pump-1 cD.NA codes for a protein with characteristics similar to those of classical collagenase family members. Biochemistry 28:5327–5334.

    Article  PubMed  CAS  Google Scholar 

  20. Murphy G, Segain JP, O’Shea M, Cockett M, Ioannou C, Lefebvre O, Chambon P, Basset P (1993) The 28kDa N-terminal domain of mouse stromelysin-3 has the general properties of a weak metalloproteinase. J Biol Chem 268:15435–15441.

    PubMed  CAS  Google Scholar 

  21. Pei D, Majmudar G, Weiss SJ (1994) Hydrolytic inactivation of a breast carcinoma cell-derived serpin by human stromelysin-3. J Biol Chem 269:25849–25855.

    PubMed  CAS  Google Scholar 

  22. Whitham SE, Murphy G, Angel P, Rahmsdorf HJ, Smith BJ, Lyons A, Harris TJR, Reynolds JJ, Herrlich P, Docherty AJP (1986) Comparison of human stromelysin and collagenase by cloning and sequence analysis. Biochem J 240:913–916.

    PubMed  CAS  Google Scholar 

  23. Müller D, Quantin B, Gesnel MC, Millon-collard R, Abecassis J, Breathnach R (1988) The collagenase gene family in humans consists of at least four members. Biochem J 253:187–192.

    PubMed  Google Scholar 

  24. Murphy GJP, Murphy G, Reynolds JJ (1991) The origin of matrix metalloproteinases and their familial relationships. FEBS Lett 289:4–7.

    Article  PubMed  CAS  Google Scholar 

  25. Lefebvre O, Wolf C, Limacher JM, Hutin P, Wendung C, LeMeur M, Basset P, Rio MC (1992) The breast cancer-associated stromelysin-3 gene is expressed during mouse mammary gland apoptosis. J Cell Biol 119:997–1002.

    Article  PubMed  CAS  Google Scholar 

  26. Nakagawa T, Hosaka M, Torii S, Watanabe T, Murakami K, Nakayama K (1993) Identification and functional expression of a new member of the mammalian Kex-2-like processing endoprotease family: Its striking structural similarity to PACE4. J Biochem 133:132–135.

    Google Scholar 

  27. Seidah NG, Day R, Marcinkiewicz M, Chretien M (1993) Mammalian paired basic amino acid convertases of prohormones and proproteins. Ann NY Acad Sci 680:135–146.

    Article  PubMed  CAS  Google Scholar 

  28. Basset P, Wolf C, Chambon P (1993) Expression of the stromelysin-3 gene in fibroblastic cells of invasive carcinomas of the breast and other human tissues: A review. Breast Cancer Res Treat 24:185–193.

    Article  PubMed  CAS  Google Scholar 

  29. Hecht PM, Anderson KV (1992) Extracellular proteases and embryonic pattern formation. Trends Cell Biol 2:197–202.

    Article  PubMed  CAS  Google Scholar 

  30. Clark IM, Cawston TE (1989) Fragments of human fibroblast collagenase. Purification and characterization. Biochem J 263:201–206.

    PubMed  CAS  Google Scholar 

  31. Murphy G, Allan JA, Willenbrock F, Cockett MI, O’Connell JP, Docherty AJP (1992) The role of the C-terminal domain in collagenase and stromelysin specificity. J Biol Chem 267:9612–9618.

    PubMed  CAS  Google Scholar 

  32. Hirose T, Patterson C, Pourmotabbed T, Mainardi C, Hasty KA (1993) Structure-function relationship of human neutrophil collagenase: Identification of regions responsible for substrate specificity and general proteinase activity. Proc Natl Acad Sci USA 90:2569–2573.

    Article  PubMed  CAS  Google Scholar 

  33. Lovejoy B, Cleasby A, Hassell AM, et al. (1994) Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor. Science 263:375–377.

    Article  PubMed  CAS  Google Scholar 

  34. Bode W, Reinemer P, Huber R, Kleine T, Schnierer S, Tschesche H (1994) The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J 13:1263–1269.

    PubMed  CAS  Google Scholar 

  35. Wolf C, Rouyer N, Lutz Y, Adida C, Loriot M, Bellocq JP, Chambon P, Basset P (1993) Stromelysin-3 belongs to a subgroup of proteinases expressed in breast carcinoma fibroblastic cells and possibly implicated in tumor progression. Proc Natl Acad Sci USA 90:1843–1847.

    Article  PubMed  CAS  Google Scholar 

  36. Hähnel E, Harvey JM, Joyce R, Robbins PD, Sterrett GF, Hähnel R (1993) Stramelysin-3 expression in breast cancer biopsies: Clinico-pathological correlations. Int J Cancer 55:1–4.

    Article  Google Scholar 

  37. Kawami H, Yoshida K, Ohsaki A, Kuroi K, Nishiyama M, Toge T (1993) Stramelysin-3 mRNA expression and malignancy: Comparison with clinicopathological features and type IV collagenase mRNA expression in breast tumors. Anticancer Res 13:2319–2324.

    PubMed  CAS  Google Scholar 

  38. Engel G, Heseemeyer K, Auer G, Backdahl M, Eriksson E, Linder S (1994) Correlation between stromelysin-3 mRNA level and outcome of human breast cancer. Int J Cancer 58:1–7.

    Article  Google Scholar 

  39. Hähnel E, Dawkins H, Robbins P, Hähnel R (1994) Expression of stromelysin-3 and nm23 in breast carcinoma and related tissues. Int J Cancer 58:157–160.

    Article  PubMed  Google Scholar 

  40. Okada A, Bellocq JP, Rouyer N, Chenard MP, Rio MC, Chambon P, Basset P (1995) Membrane-type matrix metalloproteinase (MT-mMP) gene is expressed in stromal cells of human colon, breast, and head and neck carcinomas. Proc Natl Acad Sci USA 92:2730–2734.

    Article  PubMed  CAS  Google Scholar 

  41. Rouyer N, Wolf C, Chenard MP, Rio MC, Chambon P, Bellocq JP, Basset P. Stromelysin-3 gene expression in human cancer: An overview. Invasion Metastasis 14:269–275.

    Google Scholar 

  42. Polette M, Clavel C, Cockett M, Girod de Bentzmann S, Murphy G, Birembaut P (1993) Detection and localization of mRNAs encoding matrix metalloproteinases and their tissue inhibitor in human breast pathology. Invasion Metastasis 13:31–37.

    CAS  Google Scholar 

  43. Muller D, Breathnach R, Engelmann A, Millon R, Bronner G, Flesch H, Dumont P, Eber M, Abecassis J (1991) Expression of collagenase-related metalloproteinase genes in human lung or head and neck tumours. Int J Cancer 48:550–556.

    Article  PubMed  CAS  Google Scholar 

  44. Polette M, Clavel C, Muller D, Abecassis J, Binninger I, Birembaut P (1991) Detection of mRNAs encoding collagenase I and stromelysin-2 in carcinomas of the head and neck by in situ hybridization. Invasion Metastasis 11:76–83.

    PubMed  CAS  Google Scholar 

  45. McDonnell S, Navre M, Coffey RJ, Matrisian LM (1991) Expression and localization of the matrix metalloproteinase pump-1 (MMP-7) in human gastric and colon carcinomas. Mol Carcinog 4:527–533.

    Article  PubMed  CAS  Google Scholar 

  46. Muller D, Wolf C, Abecassis J, Millon R, Engelmann A, Bronner G, Rouyer N, Rio MC, Eber M, Methlin G, Chambon P, Basset P (1993) Increased stromelysin-3 gene expression is associated with increased local invasiveness in head and neck squamous cell carcinomas. Cancer Res 53:165–169.

    PubMed  CAS  Google Scholar 

  47. Newell KJ, Witty JP, Rodgers WH, Matrisian LM (1994) Expression and localization of matrix-degrading metalloproteinases during colorectal tumorigenesis. Mol Carcinog 10:199–206.

    Article  PubMed  CAS  Google Scholar 

  48. Pajouh MS, Nagle RB, Breathnach R, Finch JS, Brawer MK, Bowden GT (1991) Expression of metalloproteinase genes in human prostate cancer. J Cancer Res Clin Oncol 117:144–150.

    Article  PubMed  CAS  Google Scholar 

  49. Gearing AJH, Beckett P, Christodoulou M, Churchill M, Clements J, Davidson AH, Drummond AH, Galloway WA, Gilbert R, Gordon JL, Leber TM, Mangan M, Miller K, Nayee P, Owen K, Patel S, Thomas W, Wells G, Wood LM, Wooley K (1994) Processing of tumor necrosis factor-a precursor by metalloproteinases. Nature 370:555–557.

    Article  PubMed  CAS  Google Scholar 

  50. McGeehan GM, Becherer JD, Bast RC Jr, et al. (1994) Regulation of tumour necrosis factor-a processing by a metalloproteinase inhibitor. Nature 370:558–561.

    Article  PubMed  CAS  Google Scholar 

  51. Marcotte PA, Kozan IM, Dorwin SA, Ryan JM (1992) The matrix metalloproteinase pump-1 catalyzes formation of low molecular weight (pro)urokinase in cultures of normal human kidney cells. J Biol Chem 267:13803–13806.

    PubMed  CAS  Google Scholar 

  52. Naldini L, Tamagnone L, Vigna E, Sachs M, Hertmann G, Birchmeier W, Daikuhara Y, Tsubouchi H, Blasi F, Comoglio PM (1992) Extracellular proteolytic cleavage by urokinase is required for activation of hepatocyte growth factor scatter factor. EMBO J 11:4825–4833.

    PubMed  CAS  Google Scholar 

  53. Dvorak HJ. Tumors: Wounds that do not heal (1986) Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659.

    Article  PubMed  CAS  Google Scholar 

  54. van den Hoof A (1988) Stromal involvement in malignant growth. Adv Cancer Res 50:159–194

    Article  Google Scholar 

  55. Zipori D (1990) Stromal cells in tumor growth and regression. Cancer J 3:164–169.

    Google Scholar 

  56. Cullen KJ, Lippman ME (1991) Stromal-epithelial interactions in breast cancer. In Genes, Oncogenes, and Hormones: Advances in Cellular and Molecular Biology of Breast Cancer. RB Dickson, ME Lippman (eds). Boston: Kluwer Academic, pp 413–431.

    Google Scholar 

  57. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med 1:27–31.

    Article  PubMed  CAS  Google Scholar 

  58. Rodgers WH, Matrisian LM, Giudice LC, Dsupin B, Cannon P, Svitek C, Gorstein F, Osteen KG (1994) Patterns of matrix metalloproteinase expression in cycling endometrium imply differential functions and regulation by steroid hormones. J Clin Invest 94:946–953.

    Article  PubMed  CAS  Google Scholar 

  59. Duffy MJ, Reilly D, O’Sullivan C, O’Higgins N, Fennelly JJ, Andreasen P (1990) Urokinase-plasminogen activator, a new and independent prognostic marker in breast cancer. Cancer Res 50:6827–6829.

    PubMed  CAS  Google Scholar 

  60. Foekens JA, Schmitt M, van Putten WLJ, Peters HA, Bontenbal M, Jänicke F, Klijn JGM (1992) Prognostic value of urokinase-type plasminogen activator in 671 primary breast cancer patients. Cancer Res 52:6101–6105.

    PubMed  CAS  Google Scholar 

  61. Grondahl-hansen J, Christensen IJ, Rosenquist C, Brünner N, Mouridsen HT, Dano K, Blichert-Toft M (1993) High levels of urokinase-type plasminogen activator and its inhibitor PAI-1 in cytosolic extracts of breast carcinomas are associated with poor prognosis. Cancer Res 53:2513–2521.

    PubMed  CAS  Google Scholar 

  62. Duffy MJ, Reilly D, McDermott E, O’Higgins N, Fennelly JJ, Andreasen PA (1994) Urokinase plasminogen activator as a prognostic marker in different subgroups of patients with breast cancer. Cancer 74:2276–2280.

    Article  PubMed  CAS  Google Scholar 

  63. Lippman ME (1993) The development of biological therapies for breast cancer. Science 259:631–632.

    Article  PubMed  CAS  Google Scholar 

  64. Brown PD (1993) Matrix metalloproteinase inhibitors: A new class of anticancer agent. Curr Opin Invest Drugs 2:617–626.

    Google Scholar 

  65. Davies B, Brown PD, East N, Crimmin MJ, Balkwill FR (1993) A synthetic matrix metalloproteinase inhibitor tumor decreases burden and prolongs survival of mice bearing human ovarian carcinoma xenografts. Cancer Res 53:2087–2091.

    PubMed  CAS  Google Scholar 

  66. Chirivi RGS, Garofalo A, Crimmin MJ, Bawden LJ, Stoppacciaro A, Brown PD, Giavazzi R (1994) Inhibition of the metastatic spread and growth of B16-bL6 murine melanoma by a synthetic matrix metalloproteinase inhibitor. Int J Cancer 58:460–464.

    Article  PubMed  CAS  Google Scholar 

  67. Wang X, Fu X, Brown PD, Crimmin MJ, Hoffman RM (1994) Matrix metalloproteinase inhibitor BB-94 (Batimastat) inhibits human colon tumor growth and spread in a patient-like orthotopic model in nude mice. Cancer Res 54:4726–4728.

    PubMed  CAS  Google Scholar 

  68. Naito K, Kanbayashi N, Nakajima S, Murai T, Arakawa K, Nishimura S, Okuyama A (1994) Inhibition of growth of human tumor cells in nude mice by a metalloproteinase inhibitor. Int J Cancer 58:730–735.

    Article  PubMed  CAS  Google Scholar 

  69. Masiakowski P, Breathnach R, Bloch J, Gannon F, Krust A, Chambon P (1982) Cloning of cDNA sequences of hormone-regulated genes from the MCF-7 human breast cancer cell line. Nucleic Acids Res 10:7895–7903.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Basset, P. et al. (1996). Stromelysin-3 and other stromelysins in breast cancer: Importance of epithelial-stromal interactions during tumor progression. In: Dickson, R.B., Lippman, M.E. (eds) Mammary Tumor Cell Cycle, Differentiation, and Metastasis. Cancer Treatment and Research, vol 83. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1259-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1259-8_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8536-6

  • Online ISBN: 978-1-4613-1259-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics