Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 83))

Abstract

Normal development and maintenance of tissue size is dependent on a balance between cell proliferation and cell death. Apoptosis, or programmed cell death, plays important roles in mammary gland development, from the embryonic development of sexual dimorphism to senescent involution of the mammary gland. The involution of secretory epithelium following pregnancy and lactation is the most dramatic example of the role of apoptosis in mammary gland development. This phase of mammary gland development provides an important physiological and pathological context in which to study the programmed death of epithelium, because a failure in cell death appears to contribute to neoplastic development [1–3]. Although considerable effort has been directed toward understanding the role of cell proliferation in neoplastic development, much less is known about the process of apoptotic cell death in either the control of normal tissue homeostasis or its potential influence on neoplastic development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Williams GT (1991) Programmed cell death: Apoptosis and oncogenesis. Cell 65:1097–1098.

    Article  PubMed  CAS  Google Scholar 

  2. Bursch W, Oberhammer F, Schulte-Hermann R (1992) Cell death by apoptosis and its protective role against disease. Topics Pharm Sci 13:245–251.

    Article  CAS  Google Scholar 

  3. Raff MC (1992) Social controls, cell survival and cell death. Nature 356:397–399.

    Article  PubMed  CAS  Google Scholar 

  4. Allan DJ, Howell A, Poberts SA, Williams GT, Watson RJ, Coyne JD, Clarke RB, Laidlaw IJ, Potten CS (1992) Reduction in apoptosis relative to mitosis in histologically normal epithelium accompanies fibrocystic change and carcinoma of the premenopausal human breast. J Pathol 67:25–32.

    Article  Google Scholar 

  5. Thompson HJ, Strange R, Schedin PJ (1992) Apoptosis in the genesis and prevention of cancer. Cancer Epidemiol Biomarkers Prev 1:597–602.

    PubMed  CAS  Google Scholar 

  6. Barbacid M (1986) Oncogenes and human cancer: Cause or consequence? Carcinogenesis 7:1037–1042.

    Article  PubMed  CAS  Google Scholar 

  7. Medina D (1988) The preneoplastic state in mouse mammary tumorigenesis. Carcinogenesis 8:1113–1119.

    Article  Google Scholar 

  8. Morris DW, Cardiff RD (1987) Multistep model of mouse mammary tumor development. Adv Viral Oncol 7:123–140.

    CAS  Google Scholar 

  9. Dupont WD, Page DL (1985) Risk factors for breast cancer in women with proliferative breast disease. N Engl J Med 312:146–151.

    Article  PubMed  CAS  Google Scholar 

  10. Wellings SR, Jensen HM, Marcum RG (1975) An atlas of subgross pathology of the human breast with special reference to precancerous lesions. J Natl Cancer Inst 30:231–273.

    Google Scholar 

  11. Dupont WD, Pari FF, Hartmann WH, Brinton LA, Winfield AC, Worrell JA, Schuyler PA, Plummer WD (1993) Breast cancer risk associated with proliferative breast disease and atypical hyperplasia. Caner 71:1258–1265.

    Article  CAS  Google Scholar 

  12. London SJ, Connolly JL, Schnitt SJ, Colditz GA (1992) A prospective study of benign breast disease and the risk of breast cancer. JAMA 267:941–944.

    Article  PubMed  CAS  Google Scholar 

  13. Hockenberry D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ (1990) Bcl-2 is an inner mitochondrial membrane protein that blacks programmed cell death. Nature 348:334–336.

    Article  Google Scholar 

  14. Willliams GT, Smith CA, Spooncer E, Dexter TM, Taylor DR (1990) Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis. Nature 343:76–79.

    Article  Google Scholar 

  15. Schulte-Hermann R, Timmermann-Trosiener I, Barthel G, Bursch W (1990) DNA synthesis, apoptosis and phenotypic expression as determinants of growth altered foci in rat liver during phenobarbital promotion. Cancer Res 50:5127–5135.

    PubMed  CAS  Google Scholar 

  16. Andres A-C, Bchini O, Schubar B, Dolder B, LeMeur M, Gerlinger P (1991) H-ras induced transformation of mammary epithelium is favored by increased oncogene expression or by inhibition of mammary regression. Oncogene 6:771–779.

    PubMed  CAS  Google Scholar 

  17. Harris JR, Lippman ME, Veronesi U, Willett W (1992) Breast cancer. N Engl J Med 327:319–328.

    Article  PubMed  CAS  Google Scholar 

  18. Ewertz M, Duffy SW, Adami H-O, Kvale G, Loaned E, Meirik O, Mellengaard A, Soini I, Tulinius H (1990) Age at first birth, parity and risk of breast cancer: A meta-analysis of 8 studies from the Nordic countries. Int J Cancer 46:597–603

    Article  PubMed  CAS  Google Scholar 

  19. Trichopoulos D, Hsieh CC, MacMahon B, Lin T-M, Lowe CR, Mirra AP, Ravnihar B, Salber EJ, Valaoras VG, Yuasa S (1983) Age at any birth and breast cancer risk, Int J Cancer 31:701–704.

    Article  PubMed  CAS  Google Scholar 

  20. Byers T, Graham S, Rzepka T, Marshall J (1985) Lactation and breast cancer: Evidence for a negative association in premenopausal women. Am J Epidemiol 121:664–674.

    Article  PubMed  CAS  Google Scholar 

  21. McTiernan A, Thomas DB (1986) Evidence for a protective effect of lactation on risk of breast cancer in young women. Am J Epidemiol 124:353–358.

    PubMed  CAS  Google Scholar 

  22. Russo J, Rivera R, Russo IH (1992) Influence of age and parity on the development of the human breast. Breast Cancer Res Treat 23:211–218.

    Article  PubMed  CAS  Google Scholar 

  23. Yoo K-Y, Tajima K, Kurioshi T, Hirose K, Yoshida M, Miura S, Murai H (1992) Independent protective effect of lactation against breast cancer: A case-control study in Japan. Am J Epidemiol 135:726–733.

    PubMed  CAS  Google Scholar 

  24. Wyllie AH, Kerr JFR, Currie AR (1980) Cell death: The significance of apoptosis. Int Rev Cyt 68:251–306.

    Article  CAS  Google Scholar 

  25. Ucker DS (1991) Death by suicide: One way to go in mammalian cellular development? N Biol 3:103–109.

    CAS  Google Scholar 

  26. Helminen HJ, Ericsson JLE (1968) Studies on mammary gland involution IL Ultrastructural evidence for auto- and heterophagocytic pathways for cytoplasmic degradation. J Ultrastruct Res 25:214–227.

    Article  PubMed  CAS  Google Scholar 

  27. Ossowski L, Biegel D, Reich E (1979) Mammary plasminogen activator: Correlation with involution, hormonal modulation and comparsion between normal and neoplastic tissue. Cell 16:929–940.

    Article  PubMed  CAS  Google Scholar 

  28. Walker NI, Bennett RE, Kerr JFR (1989) Cell death by apoptosis during involution of the lactating breast in mice and rats. Am Anat 185:19–32.

    Article  CAS  Google Scholar 

  29. Strange R, Li F, Saurer S, Burkhardt A, Friis RR (1992) Apoptotic cell death and tissue remodeling during mouse mammary gland involution. Development 115:49–58.

    PubMed  CAS  Google Scholar 

  30. Talhouk RS, Bisseil MJ, Werb Z (1992) Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. J Cell Biol 118:1271–1282.

    Article  PubMed  CAS  Google Scholar 

  31. Wellings SR, DeOme KB (1963) Electron microscopy of milk secretion in the mammary gland in C3H/Crgl mouse. III. Cytomorphology of the involuting gland. J Natl Cancer Inst 30:241–248.

    PubMed  CAS  Google Scholar 

  32. Lascelles AK, Lee CS (1978) Involution of the mammary gland. In Lactation, Vol IV. BL Larson (ed). New York: Academic Press, pp 115–177.

    Google Scholar 

  33. Warburton MJ, Mitchell S, Ormerod EJ, Rudland P (1982) Distribution of myoepithelial cells and basement membrane proteins in the resting, pregnant, lactating and involuting rat mammary gland. J Histochem Cytochem 30:667–676.

    Article  PubMed  CAS  Google Scholar 

  34. Dickson SR, Warburton MJ (1992) Enhanced synthesis of gelatinase and Stromelysin by myoepithelial cells during involution of the rat mammary gland. J Histochem Cytochem 40:697–703.

    Article  PubMed  CAS  Google Scholar 

  35. Li F, Strange R, Friis RR, Djonov V, Altermatt H-J, Saurer S, Niemann H, Andres A-C (1994) Expression of Stromelysin-1 and TIMP-1 in the involuting mammary gland and in early invasive tumors of the mouse. Int J Cancer 59:560–568.

    Article  PubMed  CAS  Google Scholar 

  36. Li F, Bielke W, Andres A-C, Friis RR, Bemis LT, Geske FJ, Strange R (1995) Isolation of cDNAs from mammary epithelium undergoing post-lactational apoptotic cell death. Cell Death Differ 2:108–117.

    Google Scholar 

  37. Martinez-Hernandez A, Fink LM, Pierce GB (1976) Removal of basement membrane in the involuting breast. Lab Invest 34:455–462.

    PubMed  CAS  Google Scholar 

  38. Radnor CJP (1972) Myoepithelium in involuting mammary glands of the rat. J Anat 112:355–365.

    PubMed  CAS  Google Scholar 

  39. Werb Z, Tremble PM, Behrendtsen O, Crowley E, Damsky CH (1989) Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol 109:877–889.

    Article  PubMed  CAS  Google Scholar 

  40. Yamamoto H, Itoh F, Hinoda Y, Senota A, Yoshimoto M, Nakamura H, Imai K, Yachi A (1994) Expression of matrilysin mRNA in colorectal adenomas and its induction by truncated fibronectin. Biochem Biophys Res Commun 201:657–664.

    Article  PubMed  CAS  Google Scholar 

  41. Sympson C, Talhouk RS, Alexander CM, Chin JR, Clift SM, Bissell MJ, Werb Z (1994) Targeted expression of Stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for intact basement membrane for tissue-specirfic gene expression. J Biol Chem 125:681–693.

    CAS  Google Scholar 

  42. Boudreau N, Sympson CJ, Werb Z, Bissell MJ (1995) Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267:891–893.

    Article  PubMed  CAS  Google Scholar 

  43. Buttyan R, Olsson CA, Pintar J, Chang C, Bandyk M, Ng P-Y, Sawczuk IS (1989) Induction of the TRPM-2 gene in cells undergoing programmed death. Mol Cell Biol 9:3473–3481.

    PubMed  CAS  Google Scholar 

  44. Fesus L, Thomazy V, Falus A (1987) Induction and activation of tissue transglutaminase during programmed cell death. FEBS Lett 224:104–108.

    Article  PubMed  CAS  Google Scholar 

  45. Yonish-Rouach E, Renitzky D, Lotem J, Sachs L, Kimichi A, Oren M (1991) Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352:345–347.

    Article  PubMed  CAS  Google Scholar 

  46. Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC (1992) Induction of apoptosis in fibroblasts by c-myc protein. Cell 69:119–128.

    Article  PubMed  CAS  Google Scholar 

  47. Martikianen P, Kyprianou N, Issacs JT (1990) Effect of transforming growth factor-β1 on proliferation and death of rat prostatic cells. Endocrinology 127:2963–2968.

    Article  Google Scholar 

  48. Matrisian LM, Glaichenhaus N, Gesnel M-C, Breathnach R (1985) Epidermal growth factor and oncogenes induce transcription of the same cellular mRNA in rat fibroblasts. EMBO J 4:1435–1440.

    PubMed  CAS  Google Scholar 

  49. Gewert DR, Coulombe B, Castellino M, Skup D, Williams BRG (1987) Characterization and expression of a murine gene homologous to human EPA/TIMP: A virus-induced gene in the mouse. EMBO J 6:651–657.

    PubMed  CAS  Google Scholar 

  50. Dear TN, Ramshaw IA, Kefford RF (1988) Differential expression of a novel gene, WDNM1, in nonmetastatic rat mammary adenocarcinoma cells. Cancer Res 48:5203–5209.

    PubMed  CAS  Google Scholar 

  51. Triebel S, Bläser J, Reinke H, Tschesche H (1992) A 25kDa α2-microglobulin-related protein is a component of the 125 kDa form of human gelatinase. FEBS Lett 314:386–388.

    Article  PubMed  CAS  Google Scholar 

  52. Kjeldsen L, Johnsen AH, Sengel0v H, Borregaard N (1993) Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 268:10425–10432.

    PubMed  CAS  Google Scholar 

  53. Baker NE, Mlodzik M, Rubin GM (1990) Spacing differentiation in the developing Drosophila eye: A fibrinogen-related lateral inhibitor encoded by scabrous. Science 250:1370–1377.

    Article  PubMed  CAS  Google Scholar 

  54. Rüegg C, Pytela R (1995) Sequence of a human transcript expressed in T-lymphocytes encoding a fibrinogen-like protein. Gene 160:257–262.

    Article  PubMed  Google Scholar 

  55. Dowbenko D, Kikuta A, Gillett N, Lasky L (1993) Glycosylation-dependent cell adhesion molecule 1 (GlyCAM-1) mucin is expressed by lactating mammary gland epithelial cells and is present in milk. J Clin Invest 92:952–960.

    Article  PubMed  CAS  Google Scholar 

  56. Senger DR, Perruzzi CA, Papadopoulos-Sergiou A, Van De Water L (1994) Adhesive properties of Osteopontin: Regulation by a naturally occurring thrombin-cleavage in close proximity to the GRGDS cell-binding domain. Mol Biol Cell 5:565–574.

    PubMed  CAS  Google Scholar 

  57. Jiang H-P, Serrero G (1992) Isolation and characterization of a full-length cDNA coding for an adipose differentiaton-related protein. Proc Natl Acad Sci USA 89:7859–7860.

    Article  Google Scholar 

  58. Schmidt GH (1971) Biology of Lactation. San Francisco: W.H. Freeman.

    Google Scholar 

  59. Meredith JE Jr, Fazeli B, Schwartz MA (1993) The extraellular matrix as a cell survival factor. Mol Biol Cell 9:953–961.

    Google Scholar 

  60. Frisch SM, Francis H (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124:619–624.

    Article  PubMed  CAS  Google Scholar 

  61. Bates RC, Buret A, van Helden DF, Horton MA, Burns GF (1994) Apoptosis induced by inhibition of intercellular contact. J Cell Biol 125:403–415.

    Article  PubMed  CAS  Google Scholar 

  62. Ruoslahti E, Reed JC (1994) Anchorage dependence, integrins and apoptosis. Cell 77:477–478.

    Article  PubMed  CAS  Google Scholar 

  63. Re F, Zanetti A, Sironi M, Polentarutti N, Lanfrancone L, Dejana E, Colotta F (1994) Inhibiton of anchorage-dependent cell spreading triggers apoptosis in cultures human endothelial cells. J Cell Biol 127:537–546.

    Article  PubMed  CAS  Google Scholar 

  64. Dürnberger H, Kratochwil K (1980) Specificity of tissue interaction and origin of mesenchymal cells in the androgen response to the embryonic mammary gland. Cell 19:465–471.

    Article  PubMed  Google Scholar 

  65. Haslam SZ (1991) Stromal-epithelial interactions in normal and neoplastic mammary gland. In Regulatory Mechanisms in Breast Cancer. M Lippman, R Dickson (eds). Boston: Kluwer Academic, pp 401–420.

    Chapter  Google Scholar 

  66. Howlett AR, Bissell MJ (1993) The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium. Epithel Ceil Biol 2:79–89.

    CAS  Google Scholar 

  67. Foulds L (1969) Neoplastic Development New York: Academic Press.

    Google Scholar 

  68. Cardiff RD (1984) Protoneoplasia: The molecular biology of murine mammary hyperplasia. Adv Cancer Res 42:167–190.

    Article  PubMed  CAS  Google Scholar 

  69. Schedin PJ, Strange R, Kaeck M, Singh M, Thompson HJ (1995) Treatment with chemopreventive agents DFMO and retinoic acid results in altered mammary mesenchyme and epithelial cell loss. Carcinogenesis 16:1787–1794.

    Article  PubMed  CAS  Google Scholar 

  70. Verma AK (1990) Inhibition of tumor promotion by DL-α-difuoromethyl-ornithine, a specific irreversible inhibitor of ornithine decarboxylase. Basic Life Sci 52:195–204.

    PubMed  CAS  Google Scholar 

  71. Maiorana A, Gullino PM (1980) Effect of retinyl acetate on the incidence of mammary carcinomas and hepatomas in mice. J Natl Cancer Inst 64:655–663.

    PubMed  CAS  Google Scholar 

  72. Guenette RS, Corbeil HB, Léger J, Wong K, Mézl V, Mooibroek M, Tenniswood M (1994) Induction of gene expression during involution of the lactating mammary gland of the rat. J Mol Endocrinol 12:47–60.

    Article  PubMed  CAS  Google Scholar 

  73. Chammas R, Taverna D, Cella N, Santos C, Hynes N (1994) Laminin and tenascin assembly and expression regulate HC11 mouse mammary cell differentiation. J Cell Sci 107:1031–1040.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schedin, P.J., Thackray, L.B., Malone, P., Fontaine, S.C., Friis, R.R., Strange, R. (1996). Programmed cell death and mammary neoplasia. In: Dickson, R.B., Lippman, M.E. (eds) Mammary Tumor Cell Cycle, Differentiation, and Metastasis. Cancer Treatment and Research, vol 83. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1259-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1259-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8536-6

  • Online ISBN: 978-1-4613-1259-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics