Skip to main content

The Molecular Basis for the Control of Mammalian Cell Growth

  • Chapter
Basic and Clinical Applications of Flow Cytometry

Part of the book series: Developments in Oncology ((DION,volume 77))

  • 62 Accesses

Abstract

Multicellular organisms face a unique problem in regulating proliferation of their component cells. This is because, whereas failure of even a large proportion of cells to divide within a tissue will generally be of little consequence as there are always other cells present that can renew the affected tissue, the unrestrained proliferation of even one cell and its progeny will be lethal. Indeed, this is the disease we call cancer. Recently, there have been many spectacular advances in our understanding of the molecular processes that regulate cell proliferation. This review will outline our current understanding of the major features of cell growth regulation in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartlett R, Nurse P: Yeast as a model system for understanding the control of DNA replication in eukaryotes. Bioessays 12:457–463, 1990.

    Article  PubMed  CAS  Google Scholar 

  2. Pines J: Cell proliferation and control. Curr. Opin. Cell Biol. 4:144–147, 1992.

    Article  PubMed  CAS  Google Scholar 

  3. Pines J: Cyclins: Wheels within wheels. Cell Growth Diff. 2:305–310, 1991.

    PubMed  CAS  Google Scholar 

  4. Matsushime H, Roussel MF, Ashmun RA, Sherr CJ: Human D-type cyclin. Cell 65:701–713, 1991.

    Article  PubMed  CAS  Google Scholar 

  5. Andrews B: Dialogue with the cell cycle. Nature 355:393–394, 1992.

    Article  PubMed  CAS  Google Scholar 

  6. Mudryj M, Devoto SH, Hiebert SW, et al: Cell cycle regulation of the E2F transcription factor involves an interaction with cyclin A. Cell 65:1243–1253, 1991.

    Article  PubMed  CAS  Google Scholar 

  7. Bagchi S, Weinmann R, Raychaudhuri P: The retino-blastoma protein copurifies with E2F-I, an E1A-regulated inhibitor of the transcription factor E2F. Cell 65:1063–1072, 1991.

    Article  PubMed  CAS  Google Scholar 

  8. Chellappan SP, Hiebert S, Mudryj M, et al: The E2F transcription factor is a cellular target for the RB protein. Cell 65:1053–1061, 1991.

    Article  PubMed  CAS  Google Scholar 

  9. Chittenden T, Livingston DM, Kaelin WJ: The T/E1A-binding domain of the retinoblastoma product can interact selectively with a sequence-specific DNA-binding protein. Cell 65:1073–1082, 1991.

    Article  PubMed  CAS  Google Scholar 

  10. Buchkovich K, Duffy LA, Harlow E: The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 58:1097–1105, 1989.

    Article  PubMed  CAS  Google Scholar 

  11. Chen P-L, Scully P, Shew J-Y, et al: Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell 58:1193–1198, 1989.

    Article  PubMed  CAS  Google Scholar 

  12. Rustgi AK, Dyson N, Bernards R: Amino-terminal domains of c-myc and N-myc proteins mediate binding to the retinoblastoma gene product. Nature 352: 541–544, 1991.

    Article  PubMed  CAS  Google Scholar 

  13. Levine A: The p53 tumour suppressor gene and product. Cancer Surveys 12:59–79, 1992.

    PubMed  CAS  Google Scholar 

  14. Hunter T, Pines J: Cyclins and cancer. Cell 66: 1071–1074, 1991.

    Article  PubMed  CAS  Google Scholar 

  15. Weinberg R: The retinoblastoma gene and gene product. Cancer Surveys 12:43–57, 1992.

    PubMed  CAS  Google Scholar 

  16. Almendral JM, Sommer D, MacDonald-Bravo H, et al: Complexity of the early genetic response to growth factors in mouse fibroblasts. Mol. Cell. Biol. 8:2140–2148, 1988.

    PubMed  CAS  Google Scholar 

  17. Lord KA, Hoffman-Liebermann B, Liebermann DA: Complexity of the immediate early response of my-eloid cells to terminal differentiation and growth arrest includes ICAM-1, Jun-B and histone variants. Oncogene 5:387–396, 1990.

    PubMed  CAS  Google Scholar 

  18. Mohn KL, Laz TM, Hsu JC, et al: The immediate-early growth response in regenerating liver and insulin-stimulated H-35 cells: Comparison with serum-stimulated 3T3 cells and identification of 41 novel immediate-early genes. Mol. Cell. Biol. 11:381–390, 1991.

    PubMed  CAS  Google Scholar 

  19. Abate C, Curran T: Encounters with fos and jun on the road to AP-1. Sem. Cancer Biol. 1:19–26, 1990.

    CAS  Google Scholar 

  20. Curran T, Franza BR: Fos and jun: The AP-1 connection. Cell 55:395–397, 1989.

    Article  Google Scholar 

  21. Jones N: Transcriptional regulation by dimerization: Two sides to an incestuous relationship. Cell 61:9–11, 1990.

    Article  PubMed  CAS  Google Scholar 

  22. Sagar SM, Sharp FF, Curran T: Expression of c-fos protein in brain: Metabolic mapping at the cellular level. Science 240:1328–1331, 1988.

    Article  PubMed  CAS  Google Scholar 

  23. Williams S, Evan G, Hunt S: Spinal c-fos induction by sensory stimulation in neonatal rats. Neuroscience Lett. 9:309–314, 1990.

    Article  Google Scholar 

  24. Williams S, Evan GI, Hunt SP: Changing patterns of c-fos induction in spinal neurons following thermal cutaneous stimulation in the rat. Neuroscience 36:73–81, 1990.

    Article  PubMed  CAS  Google Scholar 

  25. Wisden W, Errington M, Williams S, et al: Differential expression of immediate early genes in the hippocampus and spinal cord. Neuron 4:603–614, 1990.

    Article  PubMed  CAS  Google Scholar 

  26. Ingvarsson S: The myc gene family proteins and their role in transformation and differentiation. Seminars Cancer Biol. 1:359–369, 1990.

    CAS  Google Scholar 

  27. Kelly K, Cochran BH, Stiles CD, Leder P: Cell specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35:603–610, 1983.

    Article  PubMed  CAS  Google Scholar 

  28. Hann SR, Thompson CB, Eisenman RN: C-myc oncogene protein synthesis is independent of the cell cycle in human and avian cells. Nature 314:366–369, 1985.

    Article  PubMed  CAS  Google Scholar 

  29. Rabbitts PH, Watson JV, Lamond A, et al: Metabolism of c-myc gene products: c-myc mRNA and protein expression in the cell cycle. EMBO J. 4:2009–2015, 1985.

    PubMed  CAS  Google Scholar 

  30. Thompson CB, Challoner PB, Neiman PE, Groudine M: Levels of c-myc oncogene mRNA are invariant throughout the cell cycle. Nature 314:363–366, 1985.

    Article  PubMed  CAS  Google Scholar 

  31. Waters C, Littlewood T, Hancock D, et al: c-myc protein expression in untransformed fibroblasts. Oncogene 6:101–109, 1991.

    Google Scholar 

  32. Dean M, Levine RA, Ran W, et al: Regulation of c-myc transcription and mRNA abundance by serum growth factors and cell contact. J. Biol. Chem. 261:9161–9166, 1986.

    PubMed  CAS  Google Scholar 

  33. Moore JP, Hancock DC, Littlewood TD, Evan GI: A sensitive and quantitative enzyme-linked immunosorbence assay for the c-myc and N-myc oncoproteins. Oncogene Res. 2:65–80, 1987.

    PubMed  CAS  Google Scholar 

  34. Alitalo K, Koskinen P, Makela TP, et al: Myc oncogenes: Activation and amplification. Biochem. Biophys. Acta 907:1–32, 1987.

    CAS  Google Scholar 

  35. Penn LJZ, Brooks MW, Laufer EM, Land H: Negative autoregulation of c-myc transcription. EMBO J. 9:1113–1121, 1990.

    PubMed  CAS  Google Scholar 

  36. Campisi J, Gray HE, Pardee AB, et al: Cell-cycle control of c-myc but not c-ras expression is lost following chemical transformation. Cell 36:241–247, 1984.

    Article  PubMed  CAS  Google Scholar 

  37. Eilers M, Schirm S, Bishop JM: The MYC protein activates transcription of the alpha-prothymosin gene. EMBO J. 10:133–141, 1991.

    PubMed  CAS  Google Scholar 

  38. Evan G, Wyllie A, Gilbert C, et al: Induction of apoptosis in fibroblasts by c-myc protein. Cell 63:119–125, 1992.

    Article  Google Scholar 

  39. Littlewood T, Amati B, Land H, Evan G: Max and c-Myc/Max DNA binding activities in cell extracts. Oncogene. In press.

    Google Scholar 

  40. Heikkila R, Schwab G, Wickstrom E, et al: A c-myc antisense oligodeoxynucleotide inhibits entry into S phase but not progress from GO to G1. Nature 328:445–449, 1987.

    Article  PubMed  CAS  Google Scholar 

  41. Blackwell TK, Kretzner L, Blackwood EM, et al: Sequence-specific DNA binding by the c-Myc protein. Science 250:1149–1151, 1990.

    Article  PubMed  CAS  Google Scholar 

  42. Blackwood EM, Eisenman RN: Max: A helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251:1211–1217, 1991.

    Article  PubMed  CAS  Google Scholar 

  43. Vinson C, Garcia K: Molecular model for DNA recognition by the family of basic-helix-loop-helix-zipper proteins. New Biologist 4:396–403, 1992.

    PubMed  CAS  Google Scholar 

  44. Land H, Parada LF, Weinberg RA: Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 3 04:596–602, 1983.

    Article  Google Scholar 

  45. Stone J, de Lange T, Ramsay G, et al: Definition of regions in human c-myc that are involved in transformation and nuclear localization. Mol. Cell. Biol. 7:1697–1709, 1987.

    PubMed  CAS  Google Scholar 

  46. Penn L, Brooks M, Laufer E, et al: Domains of human c-myc protein required for autosuppression and cooperation with ras oncogenes are overlapping. Mol. Cell. Biol. 10:4961–4966, 1990.

    PubMed  CAS  Google Scholar 

  47. Freytag SO: Enforced expression of the c-myc oncogene inhibits cell differentiation by precluding entry into a distinct predifferentiation state in G0/G1. Mol. Cell. Biol. 8:1614–1624, 1988.

    PubMed  CAS  Google Scholar 

  48. Bursch W, Kleine L, Tenniswood M: The biochemistry of cell death by apoptosis. Biochem. Cell. Biol. 68:1071–1074, 1990.

    Article  PubMed  CAS  Google Scholar 

  49. Cohen J, Duke R, Fadok V, KS S: Apoptosis and programmed cell death in immunity. Ann. Rev. Immunol. 10:267–293, 1992.

    Article  CAS  Google Scholar 

  50. Harmon BV, Takano YS, Winterford CM, Gobe GC: The role of apoptosis in the response of cells and tumours to mild hyperthermia. Int. J. Radiat. Biol. 59:489–501, 1991.

    Article  PubMed  CAS  Google Scholar 

  51. McConkey DJ, Orrenius S, Jondal M: Cellular signalling in programmed cell death (apoptosis). Immunol. Today 11:120–121, 1990.

    CAS  Google Scholar 

  52. Williams GT: Programmed cell death: Apoptosis and oncogenesis. Cell 65:1097–1098, 1991.

    Article  PubMed  CAS  Google Scholar 

  53. Wyllie AH: Apoptosis: Cell death in tissue regulation. J. Path. 153:313–316, 1987.

    Article  PubMed  CAS  Google Scholar 

  54. Cotter TG, Lennon SV, Glynn JG, Martin SJ: Cell death via apoptosis and its relationship to growth, development and differentiation of both tumour and normal cells. Anticancer Res. 10:1153–1159, 1990.

    PubMed  CAS  Google Scholar 

  55. Lennon SV, Martin SJ, Cotter TG: Induction of apoptosis (programmed cell death) in tumour cell lines by widely diverging stimuli. Biochem. Soc. Trans. 18:343–345, 1990.

    PubMed  CAS  Google Scholar 

  56. Ellis RE, Horvitz HR: Two C. elegans genes control the programmed deaths of specific cells in the pharynx. Development 112:591–603, 1991.

    PubMed  CAS  Google Scholar 

  57. Hockenbery D, Nunez G, Milliman C, et al: BCL-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–336, 1990.

    Article  PubMed  CAS  Google Scholar 

  58. Hockenbery DM, Zutter M, Hickey W, et al: BCL2 protein is topographically restricted in tissues characterized by apoptotic cell death. Proc. Natl. Acad. Sci. USA 88:6961–6965, 1991.

    Article  PubMed  CAS  Google Scholar 

  59. Korsmeyer SJ, McDonnell TJ, Nunez G, et al: Bcl-2: B cell life, death and neoplasia. Curr. Top. Microbiol. Immunol. 166:203–207, 1990.

    PubMed  CAS  Google Scholar 

  60. Sentman CL, Shutter JR, Hockenbery D, et al: bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67:879–888, 1991.

    Article  PubMed  CAS  Google Scholar 

  61. Solomon E, Borrow J, Goddard A: Chromosome aberrations and cancer. Science 254:1153–1160, 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Evan, G.I. (1996). The Molecular Basis for the Control of Mammalian Cell Growth. In: Valeriote, F.A., Nakeff, A., Valdivieso, M. (eds) Basic and Clinical Applications of Flow Cytometry. Developments in Oncology, vol 77. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1253-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1253-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8534-2

  • Online ISBN: 978-1-4613-1253-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics