Skip to main content

In vivo and in vitro studies of vanadate in human and rodent diabetes mellitus

  • Chapter
Vanadium Compounds: Biochemical and Therapeutic Applications

Abstract

In vivo vanadate and vanadyl have been shown to mimic the action of insulin and to be effective treatment for animal models of both Type I and Type II diabetes. The molecular mechanism of action of the vanadium salts on insulin sensitivity remains uncertain, and several potential sites proposed for the insulin-like effects are reviewed. In human trials, insulin sensitivity improved in patients with NIDDM, as well as in some patients with IDDM after two weeks of treatment with sodium metavanadate. This increase in insulin sensitivity was primarily due to an increase in non-oxidative glucose disposal, whereas oxidative glucose disposal and both basal and insulin stimulated suppression of hepatic glucose output (HGP) were unchanged. Clinically, oral vanadate was associated with a small decrease in insulin requirements in IDDM subjects. Of additional benefit, there was a decrease in total cholesterol levels in both IDDM and NIDDM subjects. Furthermore, there was an increase in the basal activities of MAP and S6 kinases to levels similar to the insulin-stimulated levels in controls, but there was little or no further stimulation with insulin was seen. Further understanding of the mechanism of vanadium action may ultimately be useful in the design of drugs that improve glucose tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nechay BR, Nanninga LB, Nechay PSE, Post RL, Grantham JJ, Macara IG, Kubena LF, Phillips TD, Nielsen FH: Role of vanadium in biology. Fed Proc45: 123–132, 1986

    Google Scholar 

  2. Lyonett, Martz, Martin: L’emploithérapeutique de derivés du vanadium. La Presse Medicale: 191–192, 1899

    Google Scholar 

  3. Dubyak GR, Kleinzeller A: The insulin-mimetic effects of vanadate as a Na-K ATPase inhibitor. J Biol Chem 255: 5306–5312, 1980

    PubMed  CAS  Google Scholar 

  4. Shechter Y, Karlish SJD: Insulin-like stimulation of glucose oxidation in rat adipocytes by vanadyl (IV) ions. Nature 284: 556–558, 1980

    Article  PubMed  CAS  Google Scholar 

  5. Dlouha H, Teisinger T, Vyskocil F: The effect of vanadate on the electrogenic Na+/K pump, intracellular Na+ concentration and electrophysiological characteristics of mouse skeletal muscle fiber. Physiol Bohemoslov 30: 1–10, 1981

    PubMed  CAS  Google Scholar 

  6. Shechter Y, Ron A: Effect of depletion of bicarbonate or phosphate ions on insulin action in rat adipocytes. Further characterization of the receptor-effector system. J Biol Chem 261: 14951–14954, 1986

    PubMed  CAS  Google Scholar 

  7. Degani H, Gochin M, Karlish SJD, ShechterY: Electron paramagnetic studies and insulin-like effects of vanadium in rat adipocytes. Biochemistry 20: 5795–5799, 1981

    Article  PubMed  CAS  Google Scholar 

  8. Tamura S, Brown TA, Dubler RE, Larner J: Insulin-like effect of vanadate on adipocyte glycogen synthase and on phosphorylation of 95,000 dalton subunit of insulin receptor. Biochemical & Biophysical Research Communications 113: 80–86, 1983

    Article  CAS  Google Scholar 

  9. Werdan K, Bauriedel G, Fisher B, Krawietz W, Erdmann E, Schmitz W, Scholz H: Stimulatory and inhibitory action of vanadate on potassium uptake and cellular sodium and potassium in heart cells in culture. Biochim Biophys Acta 23: 79–83, 1982

    Google Scholar 

  10. Hori C, Oka T: Vanadate enhances the stimulatory action of insulin on DNA synthesis in cultured mouse mammary gland. Biochim Biophys Acta 610: 235–240, 1980

    PubMed  CAS  Google Scholar 

  11. Smith JB: Vanadium ions stimulate DNA synthesis in Swiss mouse 3T3 and 3T6 cells. Proc Natl Acad Sci (USA) 80: 6162–6166, 1983

    Article  CAS  Google Scholar 

  12. Canalis E: Effect of sodium vanadate on deoxyribonucleic acid and protein synthesis on cultured rat clavaria. Endocrinology 116: 855–862, 1985

    Article  PubMed  CAS  Google Scholar 

  13. Shechter Y: Insulin mimetic effects of vanadate: possible implications for future treatment of diabetes. Diabetes 39: 1–5, 1990

    Article  PubMed  CAS  Google Scholar 

  14. Meyerovitch J, Rothenberg P, Shechter Y, Bonner-Weir S, Kahn CR: Vanadate normalizes hyperglycemia in two mouse models of non-insulin dependent diabetes mellitus. J Clin Invest 87: 1286–1294, 1991

    Article  PubMed  CAS  Google Scholar 

  15. Brichard SM, Baily CJ, Henquin JC: Long term improvement of glucose homeostatis by vanadate in obese hyperinsulin fa/fa rats. Endocrinology 125: 2510–2516, 1989

    Article  PubMed  CAS  Google Scholar 

  16. Brichard SM, Baily CJ, Henquin JC: Marked improvement of glucose homeostasis in diabetic ob/ob mice given oral vanadate. Diabetes 39: 1326–1332, 1990

    Article  PubMed  CAS  Google Scholar 

  17. Ramanadham S, Mongold JJ, Brownsey RW, Cros GH, McNeill JH: Oral vanadyl sulfate in treatment of diabetes mellitus in rats. Am J Physiol 257: H904–911, 1989

    PubMed  CAS  Google Scholar 

  18. Heyliger CE, Tahiliani AG, McNeill JH: Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science 227: 1474–1477, 1985

    Article  PubMed  CAS  Google Scholar 

  19. Meyerovitch J, Backer JM, Kahn CR: Hepatic phosphotyrosine phosphatase activity and its alterations in diabetic rats. J Clin Invest 84: 976–983, 1989

    Article  PubMed  CAS  Google Scholar 

  20. Battell ML, Yuen VG, McNeill JH: Treatment of BB rats with vanadyl sulphate. Pharma Commun 1(4): 291–301, 1992

    CAS  Google Scholar 

  21. Gil J, Miralpeix M, Carreras J, Bartrons R: Insulin-like effects of vanadate on glucokinase activity and fructose 2,6-busphosphate levels in the liver of diabetic rats. J Biol Chem 263: 1868–1871, 1988

    PubMed  CAS  Google Scholar 

  22. Ramanadham S, Brownsey RW, Cros GH, Mongold JJ, McNeill JH: Sustained prevention of myocardial and metabolic abnormalities in diabetic rats following withdrawal from oral vanadyl treatment. Metabolism 38: 1022–1028, 1989

    Article  PubMed  CAS  Google Scholar 

  23. Brichard SM, Omgemta LN, Henquin JC: Oral vanadate decreases muscle insulin resistance in obese fa/fa rats. Diabetologia 35: 522–527, 1990

    Article  Google Scholar 

  24. Meyerovitch J, Farfel Z, Sack J, Shechter Y: Oral administration of vanadate normalizes blood glucose levels in streptozotocin-treated rats. Characterization and mode of action. J Biol Chem 262: 6658–6662, 1987

    PubMed  CAS  Google Scholar 

  25. Flier JS: Lilly Lecture: Syndromes of insulin resistance. From patient to gene and back again. Diabetes 41: 1207–1219, 1992

    Article  PubMed  CAS  Google Scholar 

  26. Kahn CR: Causes of insulin resistance. Nature 373: 384–385, 1995

    Article  PubMed  CAS  Google Scholar 

  27. Rothenberg PL, Lane WS, Karasik A, Backer J, White M, Kahn CR: Purification and partial sequence analysis of pp 185, the major cellular substrate of the insulin receptor tyrosine kinase. J Biol Chem 266: 8302–8311, 1991

    PubMed  CAS  Google Scholar 

  28. Sun X, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, Cahill DA, Goldstein BJ, White MF: The structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352: 73–77, 1991

    Article  PubMed  CAS  Google Scholar 

  29. Koch CA, Anderson DJ, Moran MF, Ellis C, Pawson T: SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 252: 668–674, 1991

    Article  PubMed  CAS  Google Scholar 

  30. Gould GW, Derechin V, James DE, Tordjman K, Ahern S, Gibbs EM, Lienhard GE, Mueckler M: Insulin-stimulated translocation of the HepG2/erythrocyte-type glucose transporter expressed in 3T3-L1 adipocytes. J Biol Chem 264: 2180–2184, 1989

    PubMed  CAS  Google Scholar 

  31. Cormont M, Tanti JF, Zahraoui A, Vanobberghen E, Tavitian A, LeMarchand-Brustel Y: Insulin and okadaic acid induce Rab4 redistribution in adipocytes. J Biol Chem 268(26): 19491–19497, 1993

    PubMed  CAS  Google Scholar 

  32. Berman M, McGuire EA, Roth J, Zeleznik AJ: Kinetic modeling of insulin binding to receptors and degradation in vivo in rabbits. Diabetes 29: 50–59, 1980

    PubMed  CAS  Google Scholar 

  33. Fischer EH, Charbonneau H, Tonks NK: Protein tyrosine phosphatases-a diverse family of intracellular and transmembrane enzymes. Science 253: 401–406, 1991

    Article  PubMed  CAS  Google Scholar 

  34. Papoulas O, Williams NG, Kingston RE: DNA binding activation of c-Myc purified from eukoryotic cells. J Biol Chem 267: 10470–10480, 1992

    PubMed  CAS  Google Scholar 

  35. Tamura S, Brown TA, Whipple JH, Fujita-Yamaguchi Y, Dubler RE, Cheng K, Larner J: A novel mechanism for the insulin-like effect of vanadate on glycogen synthase in rat adipocytes. J Biol Chem 259: 6650–6658, 1984

    PubMed  CAS  Google Scholar 

  36. Strout HV, Vicario PP, Saperstein R, Slater EE: The insulin-mimetic effect of vanadate is not correlated with insulin receptor tyrosine kinase activity nor phosphorylation in mouse diaphragm in vivo. Endocrinology 124: 1918–1924, 1989

    Article  PubMed  CAS  Google Scholar 

  37. Green A: The insulin-like effect of sodium vanadate on adipocyte glucose transport is mediated at a post-insulin-receptor level. Biochem J 238: 663–669, 1986

    PubMed  CAS  Google Scholar 

  38. Shisheva A, Shechter Y: Quercetin selectively inhibits insulin receptor function in vitro and the bioresponses of insulin and insulinomimetic agents in rat adipocytes. Biochemistry 31: 8059–8063, 1992

    Article  PubMed  CAS  Google Scholar 

  39. Shisheva A, Shechter YA: Ccytosolic protein tyrsoine kinase in rat adipocytes. FEBS Lett 300: 93–96, 1982

    Article  Google Scholar 

  40. Kadota S, Fantus GI, Deragon G, Guyda HJ, Hersh B, Posner BI: Peroxide(s) of vanadium: a novel and potent insulin-mimetic agent which activates the insulin receptor kinase. Biochem Biophys Res Commun 147: 259–266, 1987

    Article  PubMed  CAS  Google Scholar 

  41. Goldstein BJ: Protein-tyrosine phosphatase and the regulation of insulin action. J Cell Biochem 48: 33–42, 1992

    Article  PubMed  CAS  Google Scholar 

  42. Sale GJ: Anonymous Advances in Protein Phosphatases. 6th ed. Insulin receptor phosphotyrosyl protein phosphatases and the regulation of insulin receptor tyrosine kinase action. 1991, pp 159–186

    Google Scholar 

  43. Swarup G, Cohen S, Garbers DL: Inhibition of membrane phosphotyrosyl protein phosphatase activity by vanadate. Biochem Biophys Res Commun 107: 1104–1109, 1982

    Article  PubMed  CAS  Google Scholar 

  44. Meyerovitch J, Backer JM, Csermely P, Shoelson SE, Kahn CR: Insulin differentially regulates protein phosphotyrosine phosphatase activity in rat hepatoma cells. Biochemistry 31: 10338–10344, 1992

    Article  PubMed  CAS  Google Scholar 

  45. Burant CF, Treutelaar MK, Buse MG: Diabetes-induced functional and structural changes in insulin receptors from rat skeletal muscle. J Clin Invest 77: 260–270, 1986

    Article  PubMed  CAS  Google Scholar 

  46. Caro JF, Ittoop O, Pories WJ, Meelheim D, Flickinger EG, Thomas F, Jenquin M, Silverman JF, Khazanie PG, Sinha MK: Studies on the mechanism of insulin resistance in the liver from humans with noninsulin-dependent diabetes. J Clin Invest 78: 249–258, 1986

    Article  PubMed  CAS  Google Scholar 

  47. Freidenberg GR, Henry RR, Klein HH, Reichart DR, Olefsky JM: Decreased kinase activity of insulin receptors from adipocytes of non-insulin dependent diabetic subjects. J Clin Invest 79: 240–250, 1987

    Article  PubMed  CAS  Google Scholar 

  48. Arner P, PollareT, Lithell H, Livingston JN: Defective insulin receptor tyrosine kinase in human skeletal muscle in obesity and Type II (noninsulin-dependent) diabetes mellitus. Diabetologia 30: 437–440, 1987

    Article  PubMed  CAS  Google Scholar 

  49. Ueki H, Okuhama R, Sera M, Inoue T, Tominaga N, Mori ta T: Stimulatory affect of vanadage on 3′,5′-cyclic guanosine monophosphate-inhibited low Michaelis-Menten constant 3′,5′-cyclic adenosine monophosphate phosphodiesterase activity in isolated rat fat pads. Endocrinology 131: 441–446, 1992

    Article  PubMed  CAS  Google Scholar 

  50. Souness JE, Maslen C, Scott LC: Effects of solubilization and vanadate\glutathione complex on inhibitor potencies agains eosinophil cyclic AMP-specific phosphodiesterase. FEBS Lett 302: 181–184, 1992

    Article  PubMed  CAS  Google Scholar 

  51. Soll AH, Kahn CR, Neville DM, Jr.: Insulin binding to liver plasma membranes in the obese hyperglycemic (ob/ob) mouse: Demonstration of a decreased number of functionally normal receptors. J Biol Chem 250: 7402–7407, 1975

    Google Scholar 

  52. Brichard SM, Assimacopoulos-Jeannet F, Jeanrenaud B: Vanadate treatment markedly increases glucose utilization in muscle of insulin-resistant fa/fa rats without modifying glucose transporter expression. Endocrinology 131: 311–317, 1992

    Article  PubMed  CAS  Google Scholar 

  53. Paquet MR, Romanek RJ, Sargeant RJ: Vanadate induces the recruitment of GLUT-4 glucose transporter to the plasma membrane of rat adipocytes. Mol Cell Biochem 109: 149–155, 1992

    Article  PubMed  CAS  Google Scholar 

  54. Ferber S, Meyerovitch J, Kriauciunas KM, Kahn CR: Vanadate normalizes hyperglycemia and PEPCK mRNA levels in ob/ob mice. (In Press) Metabolism 1994

    Google Scholar 

  55. DeFronzo RA, Robin JD, Andres R: Glucose clamp techniques: a method for quantifying insulin secreation and resistance. Am J Physiol 237: E214–223, 1979

    PubMed  CAS  Google Scholar 

  56. Ferrannini E, DelPrato S, DeFronzo RA: Glucose kinetics and tracer methods. In: Clarke WL, Larner J and Pohl SL (eds). Methods in Diabetics Research. Vol II, Clinical Methods. Canada: Wiley Interscience, 1986

    Google Scholar 

  57. Ferrannini E: The theoretical basis of indirect calorimetry: A review. Metabolism 37: 287–301, 1988

    Article  PubMed  CAS  Google Scholar 

  58. Simonson DC, DeFronzo RA: Indirect calorimetry: methodological and interpretative problems. Am J Physiol 258: E399–412, 1990

    PubMed  CAS  Google Scholar 

  59. Curran GL, Azarnoff DL, Bolinger RE: Effect of cholesterol synthesis inhibition in normocholesteremic young men. J Clin Invest: 1251–1261, 1959

    Google Scholar 

  60. Muggeo M, Bar RS, Roth J et al.: Insulin receptors: Biologically relevant regulation of concentration and affinity. In: Miescher PA, (ed). Menarini Series on Immunopathy: First Symposium on Organ Specific Autoimmunity. Schwabe and Company, Basel, 1978, pp 149–159

    Google Scholar 

  61. Maher DW, Davis I, Boyd AW, Morstyn G: Human interleukin-4: an immunomodulator with potential therapeutic applications. Progress in Growth Factor Research 3: 43–56, 1991

    Article  PubMed  CAS  Google Scholar 

  62. Tobe K, Kadowaki T, Hara K et al.: Sequential activation of MAP kinase activator, MAP kinases, and S6 peptide kinase in intact rat liver following insulin injection. J Biol Chem 267: 21089–21097, 1992

    PubMed  CAS  Google Scholar 

  63. Doria A, Fioretto P, Avogaro A: Insulin resitance is associated with hig sodium-lithium countertransport in essential hypertension. Am J Physiol 261: E684–691, 1991

    PubMed  CAS  Google Scholar 

  64. Bhanot S, McNeill JH: Vanadyl sulfate lowers plasma insulin and blood pressure in spontaneously hypertensive rats. Hypertension 24: 625–632, 1994

    PubMed  CAS  Google Scholar 

  65. Bhanot S, McNeill JH, Bryer-Ash M: Vanadyl sulfate prevents fructose-induced hyperinsulinemia and hypertension in rats. Hypertension 23: 308–312, 1994

    PubMed  CAS  Google Scholar 

  66. Pontremoli R, Zerbini G, Rivera A, Canessa M: Insulin activation of red blood cell Na+/H+ exchange decreases the affinity of sodium sites. Kidney International 46: 365–375, 1994

    Article  PubMed  CAS  Google Scholar 

  67. Wolpert HA, Steen SN, Istfan NW, Simonson DC: Disparité effects of weight loss on insulin sensitivity and erythrocyte sodium-lithium countertransport activity. Am J Hypertension 5: 754–757, 1992

    CAS  Google Scholar 

  68. Cohen N, Halberstam M, Shlimovich P, Chang CJ, Shamoon H, Rossetti L: Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 95: 2501–2509, 1995

    Article  PubMed  CAS  Google Scholar 

  69. Blondel O, Bailte D, Portha B: In vivo insulin resistance in streptozotocin-diabetic rats-evidence for reversal following oral vanadate treatment. Diabetologia 32: 185–190, 1989

    Article  PubMed  CAS  Google Scholar 

  70. Brichard SM, Ongemba LM, Henquin JC: Oral vanadate decreases muscle insulin resistance in obese fa/fa rats. Diabetologia 35: 522–527, 1992

    Article  PubMed  CAS  Google Scholar 

  71. Malabu UH, Dryden S, McCarthy HD, Kilpatrick A, Williams G: Effects of chronic vanadate administration in the STZ-induced diabetic rat. Diabetes 43: 9–15, 1994

    Article  PubMed  CAS  Google Scholar 

  72. Olefsky J: The insulin receptor: A multifunctional protein. Diabetes 39: 1008–1016, 1990

    Article  Google Scholar 

  73. Kozma SC, Lane HA, Ferrari S, Luther H, Siegmann M, Thomas G: A stimulated S6 kinase from rat liver; identity with the mitogen activated S6 kinase of 3T3 cells. EMBO J 8: 4125–4132, 1989

    PubMed  CAS  Google Scholar 

  74. Azarnoff DL: Site of vanadium inhibition of cholesterol biosynthesis. J Amer Chem Soc 79: 2968, 1957

    Article  CAS  Google Scholar 

  75. Hudson TGF: The effects of vanadium on metabolism (continued). In: Anonymous Vanadium: Toxicology and Biological significance. Elselvier Publishing Co., New York, 1964 pp 30–43

    Google Scholar 

  76. Mountain JT, Stockell FR, Stokinger HE: Effect of ingested vanadium on cholesterol and phospholipid metabolism in the rabbit. Proc Soc Exp Biol Med 92: 582 1956

    PubMed  CAS  Google Scholar 

  77. Curran GL, Costello RL: Reduction of excess cholesterol in the rabbit aorta by inhibition of endogenous cholesterol synthesis. J Exp Med 103: 49 1956

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Goldfine, A.B., Simonson, D.C., Folli, F., Patti, ME., Kahn, C.R. (1995). In vivo and in vitro studies of vanadate in human and rodent diabetes mellitus. In: Srivastava, A.K., Chiasson, JL. (eds) Vanadium Compounds: Biochemical and Therapeutic Applications. Developments in Molecular and Cellular Biochemistry, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1251-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1251-2_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8533-5

  • Online ISBN: 978-1-4613-1251-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics