Skip to main content

Relationship Between Myocardial Function and Expression of Calcium Cycling Proteins in Nonfailing and Failing Human Myocardium

  • Chapter
  • 79 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 169))

Abstract

Several studies, previously performed in isolated human myocardium, indicated that contractile force development is similar in failing and nonfailing myocardium at low rates of stimulation [1–4]. Accordingly, it was suggested that impaired diastolic relaxation, rather than reduced systolic force development, may be the main pathologic finding in human heart failure [4]. More recently, however, it was observed that the appearence of a contractile deficit in failing compared with nonfailing human myocardium depends on the rate of stimulation, and that contractile force development of failing myocardium is considerably reduced at higher frequencies [5–7].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gwathmey JK, Copelas L, Mackinnon R, Schoen FJ, Feldman MD, Grossman W, Morgan JP. 1987. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res 61:70–76.

    PubMed  CAS  Google Scholar 

  2. Ginsburg R, Bristow MR, Billingham ME, Stinson EB, Schroeder JS, Harrison DC. 1983. Study of the noraml and failing isolated human heart: Decreased response of failing heart to isoproterenol. Am Heart J 106:535–540.

    Article  PubMed  CAS  Google Scholar 

  3. Böhm M, Beuckelmann D, Brown L, Feiler L, Lorenz B, Näbauer M, Kemkes B, Erdmann E. 1988. Reduction of beta-adrenoceptor density and evaluation of positive inotropic responses in isolated, diseased human myocardium. Eur Heart J 9:844–852.

    PubMed  Google Scholar 

  4. Morgan JP 1991. Abnormal intracellular modulation of calcium as a major cause of cardiac contractile dysfunction. N Engl J Med 325:625–632.

    Article  PubMed  CAS  Google Scholar 

  5. Hasenfuss G, Mulieri LA, Leavitt B, Allen PD, Haeberle JR, Alpert NR. 1992. Alteration of contractile function and excitation-contraction coupling in dilated cardiomyopathy. Circ Res 70:1225–1232.

    PubMed  CAS  Google Scholar 

  6. Mulieri LA, Hasenfuss G, Leavitt BJ, Allen PD, Alpert NR. 1992. Altered myocardial force-frequency relation in human heart failure. Circulation 85:1743–1750.

    PubMed  CAS  Google Scholar 

  7. Pieske B, Hasenfuss G, Holubarsch C, Schwinger R, Böhm M, Just H. 1992. Alterations of the force-frequency relationship depend on the underlying cardiac disease. Basic Res Cardiol 87:213–221.

    PubMed  Google Scholar 

  8. Feldman MD, Gwathmey JK, Phillips P, Schoen F, Morgan JP. 1988. Reversal of the force-frequency relationship in working myocardium from patients with end-stage heart failure. J Appl Cardiol 3:273–283.

    Google Scholar 

  9. Feldman MD, Alderman JR, Aroesty JN, Royal HD, Ferguson JJ, Owen RM, Grossman W, McKay RG. 1988. Depression of systolic and diastolic myocardial reserve during atrial pacing tachycardia in patients with dilated cardiomyopathy. J Clin Invest 82:1661–1669.

    Article  PubMed  CAS  Google Scholar 

  10. Hasenfuss G, Holubarsch Ch, Hermann H-P, Astheimer K, Pieske B, Just H. 1994. Influence of the force-frequency relationship on hemodynamics and left ventricular function in patients with non-failing hearts and in patients with dilated cardiomyopathy. Eur Heart J 15:164–170.

    PubMed  CAS  Google Scholar 

  11. Beuckelmann DJ, Näbauer M, Erdmann E. 1992. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 85:1046–1055.

    PubMed  CAS  Google Scholar 

  12. Arai M, Matsui H, Periasamy M. 1994. Sarcoplasmic reticulum gene expression in cardiac hypertrophy and heart failure. Circ Res 74:555–564.

    PubMed  CAS  Google Scholar 

  13. Mulieri LA, Hasenfuss G, Ittleman F, Blanchard EM, Alpert NR. 1989. Protection of human left ventricular myocardium from cutting injury with 2,3-butanedione monoxime. Circ Res 65:1441–1444.

    PubMed  CAS  Google Scholar 

  14. Pieske B, Kretschmann B, Meyer M, Holubarsch Ch, Posival H, Minami K, Just H, Hasenfuss G. 1995. Alterations in intracellular calcium handling associated with the inverse force-frequency relation in human dilated cardiomyopathy. Circulation, in press.

    Google Scholar 

  15. Studer R, Reinecke H, Bilger J, Eschenhagen T, Böhm M, Hasenfuss G, Just H, Drexler H. 1994. Gene expression of the cardiac sodium-calcium exchanger in end-stage human heart failure. Circ Res 75:443–453.

    PubMed  CAS  Google Scholar 

  16. Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J, Holubarsch Ch, Posival H, Just H, Drexler H. 1994. Relationship between myocardial function and expression of sarcoplasmic reticulum calcium-ATPase in failing and nonfailing human myocardium. Circ Res 75:434–442.

    PubMed  CAS  Google Scholar 

  17. Gwathmey JK, Slawsky MT, Hajjar RJ, Briggs GM, Morgan JP. 1990. Role of intracellular calcium handling in force interval relationship of human ventricular myocardium. J Clin Invest 85:1599–1613.

    Article  PubMed  CAS  Google Scholar 

  18. Ezzaher A, Bouanani N, Crozatier B. 1992. Force-frequency relations and response to ryanodine in failing rabbit hearts. Am J Physiol 263:H1710-H1715.

    PubMed  CAS  Google Scholar 

  19. Siri FM, Nordin C, Factor SM, Sonnenblick E, Aronson R. 1989. Compensatory hypertrophy and failure in gradual pressure-overload guinea pig heart. Am J Physiol 257: H1016-H1024.

    PubMed  CAS  Google Scholar 

  20. Rasmussen PR, Minobe W, Bristow MR. 1990. Calcium antagonist binding sites in failing and non-failing human ventricular myocardium. Biochemical Pharmacol 39:691–696.

    Article  CAS  Google Scholar 

  21. Beuckelmann DJ, Näbauer M, Erdmann E. 1991. Characteristics of calcium-current in isolated human ventricular myocytes from patients with terminal heart failure. J Mol Cell Cardiol 23:929–937.

    Article  PubMed  CAS  Google Scholar 

  22. Takahashi T, Allen PD, Lacro RV, Marks AR, Dennis AR, Schoen FJ, Grossman W, Marsh JD, Izumo S. 1992. Expression of dihydropyridine receptor (Ca2+ channel) and calsequestrin genes in the myocardium of patients with end-stage heart failure. J Clin Invest 90:927–935.

    Article  PubMed  CAS  Google Scholar 

  23. Brillantes AM, Allen PD, Takahashi T, Izumo S, Marks AR. 1992. Differences in cardiac calcium release channel (ryanodine receptor) expression in myocardium from patients with end-stage heart failure caused by ischemic versus dilated cardiomyopathy. Circ Res 71: 18–26.

    PubMed  CAS  Google Scholar 

  24. Holmberg S, Williams AJ. 1989. Single channel recordings from haman cardiac sarcoplasmic reticulum. Circ Res 65:1445–1449.

    PubMed  CAS  Google Scholar 

  25. D’Agnolo A, Luciani GB, Mazzucco A, Gallucci V, Salviati G. 1992. Contractile proteins and Ca2+ release activity of the sarcoplasmic reticulum in dilated cardiomyopathy. Circulation 85:518–525

    PubMed  Google Scholar 

  26. Mercadier JJ, Lompre AM, Duc P, Boheler KR, Fraysse JB, Wisnewsky C, Allen PD, Komajda M, Schwartz K. 1990. Altered sarcoplasmic reticulum Ca2+-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest 85:305–309.

    Article  PubMed  CAS  Google Scholar 

  27. Moravec CS, McTiernan CF. 1993. Changes in muscle function, sarcoplasmic reticulum calcium and expression of genes encoding sarcoplasmic reticulum proteins in human heart failure. Circulation 88(Suppl I):408.

    Google Scholar 

  28. Takahashi T, Allen PD, Izumo S. 1992. Expression of A-, B-, and C-type natriuretic peptide genes in failing and developing human ventricles. Correlation with expression of the Ca2+-ATPase gene. Circ Res 71:9–17.

    PubMed  CAS  Google Scholar 

  29. Limas CJ, Olivari M, Goldenberg JF, Levine TB, Bendit DG, Simon A. 1987. Calcium uptake by cardiac sarcoplasmic reticulum in human dilated cardiomyopathy. Cardiovasc Res 21:601–605.

    Article  PubMed  CAS  Google Scholar 

  30. Movsesian MA, Bristow MR, Krall J. 1989. Ca2+ uptake by cardiac sarcoplasmic reticulum from patients with idiopathic dilated cardiomyopathy. Circ Res 65:1141–1144.

    PubMed  CAS  Google Scholar 

  31. Arai M, Alpert NR, MacLennan DH, Barton P, Periasamy M. 1993. Alterations in sarcoplasmic reticulum gene expression in human heart failure: A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ Res 72:463–469.

    PubMed  CAS  Google Scholar 

  32. Wohlfart B, Noble MIM. 1982. The cardiac excitation-contraction-cycle. Pharmacol Ther 16:1–43.

    Article  PubMed  CAS  Google Scholar 

  33. Crompton M. 1990. The role of Ca2+ in the function and dysfunction of heart mitochondria. In: Langer GA, ed. Calcium and the Heart. New York: Raven Press, pp 167–198.

    Google Scholar 

  34. Carafoli E. 1985. The homeostasis of calcium in heart cells. J Mol Cell Cardiol 17:203–212.

    Article  PubMed  CAS  Google Scholar 

  35. Bers DM, Bridge JHB. 1989. Relaxation of rabbit ventricular muscle by Na-Ca-exchanger and sarcoplasmic reticulum Ca-pump; ryanodine and voltage sensitivity. Circ Res 65: 334–342.

    PubMed  CAS  Google Scholar 

  36. Bers DM, Christensen DM, Nguyen TX. 1988. Can Ca2+ entry via the Na-Ca-exchanger directly activate cardiac muscle contraction? J Mol Cell Cardiol 20:405–414.

    Article  PubMed  CAS  Google Scholar 

  37. Philipson KD. 1990. The cardiac Na+-Ca2+-exchanger. In: Langer GA, ed. Calcium and the Heart. New York: Raven Press, pp 85–108.

    Google Scholar 

  38. Philipson KD. 1992. Cardiac sodium-calcium exchanger research. Trends Cardiovasc Med 2:12–14.

    Article  PubMed  CAS  Google Scholar 

  39. Lakatta EG. 1992. Functional implications of spontaneous sarcoplasmic reticulum Ca2+ release in the heart. Cardiovasc Res 26:193–214.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hasenfuss, G. et al. (1995). Relationship Between Myocardial Function and Expression of Calcium Cycling Proteins in Nonfailing and Failing Human Myocardium. In: Dhalla, N.S., Pierce, G.N., Panagia, V., Beamish, R.E. (eds) Heart Hypertrophy and Failure. Developments in Cardiovascular Medicine, vol 169. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1237-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1237-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8526-7

  • Online ISBN: 978-1-4613-1237-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics