Advertisement

Mitochondrial DNA Mutations and Heart Failure

  • Takayuki Ozawa
  • Kazumi Katsumata
  • Mika Hayakawa
  • Makoto Yoneda
  • Masashi Tanaka
  • Satoru Sugiyama
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 169)

Abstract

The cardiomyopathies have been considered to constitute a group of diseases in which the dominant feature is involvement of heart muscle itself. Because the clinical features vary considerably, ranging from asymptomatic patients to patients with incapacitating symptoms, cardiomyopathy (CM) has been considered to be a diagnosis of exclusion, and many etiological causes have been proposed, such as abnormal handling of calcium ion by the myocardium or the inheritance of susceptibility to development of CM. Recent studies on the molecular genetics of the myocardium revealed that a substantial number of the patients with primary CM of unknown etiology, except familiar CM with Menderian heredity, retain the various multigene mutations in mitochondrial (mt) DNA of myocardium, and thus could be diagnosed as mtCM [1]. Point mutations in the β-myosin heavy chain (BMHC) gene were documented among patients with familial CM [2]. In the case of mtCM, patients show maternal inheritance or often sporadic occurrence as does primary CM.

Keywords

Mitochondrial Encephalomyopathy Familial Hypertrophic Cardiomyopathy Diffuse Hypokinesis Hydroxyl Radical Damage Oxygen Free Radical Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ozawa T. 1994. Mitochondrial cardiomyopathy. Herz 19:105–118.PubMedGoogle Scholar
  2. 2.
    Jarcho JA, McKenna W, Pare P, Solomon SD, Hocombe RF, Dickie S, Levi T, Donis-Keller H, Seidman JG, Seidman CE. 1989. Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14q1. N Engl J Med 321:1372–1378.PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG. 1981. Sequence and organization of the human mitochondrial genome. Nature 290:457–465.PubMedCrossRefGoogle Scholar
  4. 4.
    Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AMS, Eisas LJ, Nikoskelainen EK. 1988. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242:1427–1430.PubMedCrossRefGoogle Scholar
  5. 5.
    Yoneda M, Tanno S, Horai S, Ozawa T, Miyatake T, Tsuji S. 1990. A common mitochondrial DNA mutation in the t-RNALys of patients with myoclonus epilepsy associated with ragged-red fibers. Biochem Int 27:789–796.Google Scholar
  6. 6.
    Tanaka M, Nishikimi M, Suzuki H, Ozawa T, Nishizawa M, Tanaka K, Miyatake T. 1986. Deficiency of subunits in heart mitochondrial NADH-ubiquinone oxidoreductase of a patient with mitochondrial encephalomyopathy and cardiomyopathy. Biochem Biophys Res Commun 140:88–93.PubMedCrossRefGoogle Scholar
  7. 7.
    Ichiki T, Tanaka M, Nishikimi M, Suzuki H, Kobayashi M, Wada Y, Ozawa T. 1988. Deficiency of subunits of Complex I and mitochondrial encephalomyopathy. Ann Neurol 23:287–294.PubMedCrossRefGoogle Scholar
  8. 8.
    Ozawa T, Yoneda M, Tanaka M, Ohno K, Sato W, Suzuki H, Nishikimi M, Yamamoto M, Nonaka I, Horai S. 1988. Maternal inheritance of deleted mitochondrial DNA in a family with mitochondrial myopathy. Biochem Biophys Res Commun 154:1240–1247.PubMedCrossRefGoogle Scholar
  9. 9.
    Ikebe S, Tanaka M, Ohno K, Sato W, Hattori K, Kondo T, Mizuno Y, Ozawa T. 1990. Increase of deleted mitochondrial DNA in the striatum in Parkinson’s disease and senescence. Biochem Biophys Res Commun 170:1044–1048.PubMedCrossRefGoogle Scholar
  10. 10.
    Linnane AW, Marzuki S, Ozawa T, Tanaka M. 1989. Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1:642–645.PubMedCrossRefGoogle Scholar
  11. 11.
    Mita S, Rizzuto R, Moraes CT, Shanske S, Arnaudo E, Fabrizi GM, Koga Y, DiMauro S, Schon EA. 1990. Recombination via flanking direct repeats is a major cause of large-scale deletions of human mitochondrial DNA. Nucleic Acids Res 18:561–567.PubMedCrossRefGoogle Scholar
  12. 12.
    Ozawa T, Tanaka M, Sugiyama S, Hattori K, Ito T, Ohno K, Takahashi A, Sato W, Takada G, Mayumi B, Yamamoto K, Adachi K, Koga Y, Toshima H. 1990. Multiple mitochondrial DNA deletions exist in cardiomyocytes of patients with hypertrophic or dilated cardiomyopathy. Biochem Biophys Res Commun 170:830–836.PubMedCrossRefGoogle Scholar
  13. 13.
    van den Ouweland JMW, Lemkes HHP, Ruitenbeek W, Sandkuijl LA, de Vijlder MF, Struyvenberg PAA, van de Kamp JJP, Maassen JA. 1992. Mutation in mitochondrial tRNAleu(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nature Genet 1:368–371.PubMedCrossRefGoogle Scholar
  14. 14.
    Ballinger SW, Shoffner JM, Hedaya EV, Trounce I, Polak MA, Koontz DA, Wallace DC. 1992. Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion. Nature Genet 1:11–15.PubMedCrossRefGoogle Scholar
  15. 15.
    Hayakawa M, Hattori K, Sugiyama S, Ozawa T. 1992. Age-associated oxygen damage and mutations in mitochondrial DNA in human hearts. Biochem Biophys Res Commun 189:979–985.PubMedCrossRefGoogle Scholar
  16. 16.
    Ozawa T, Tanaka M, Ikebe S, Ohno K, Kondo T, Mizuno Y. 1990. Quantitative determination of deleted mitochondrial DNA relative to normal DNA in Parkinsonian striatum by a kinetic PCR analysis. Biochem Biophys Res Commun 172:483–489.PubMedCrossRefGoogle Scholar
  17. 17.
    Hayakawa M, Sugiyama S, Hattori K, Takasawa M, Ozawa T. 1993. Age-associated damage in mitochondrial DNA in human hearts. Mol Cell Biochem 119:95–103.PubMedCrossRefGoogle Scholar
  18. 18.
    Oltvai ZN, Milliman CL, Korsmeyer SJ. 1993. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619.PubMedCrossRefGoogle Scholar
  19. 19.
    Hockenberg DM, Oltavai ZN, Yin X-M, Milliman CL, Korsmeyer SJ. 1993. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241–251.CrossRefGoogle Scholar
  20. 20.
    Brown GG, Gadaleta G, Pepe G, Saccone C, Sbisa E. 1986. Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. J Mol Biol 192:503–511.PubMedCrossRefGoogle Scholar
  21. 21.
    Hayakawa M, Ogawa T, Sugiyama S, Ozawa T. 1989. Hydroyl radical and leukotoxin biosynthesis in neutrophil plasma membrane. Biochem Biophys Res Commun 161: 1077–1085.PubMedCrossRefGoogle Scholar
  22. 22.
    Wyllie AH. 1994. Death gets a brake. Nature 369:272–273.PubMedCrossRefGoogle Scholar
  23. 23.
    Katsumata K, Hayakawa M, Tanaka M, Sugiyama S, Ozawa T. 1994. Fragmentation of human heart mitochondrial DNA associated with premature aging. Biochem Biophys Res Commun 202:102–110.PubMedCrossRefGoogle Scholar
  24. 24.
    Ozawa T, Katsumata K, Hayakawa M, Tanaka M, Sugiyama S, Tanaka T, Itoyama S, Nunoda S, Sekiguchi M. 1995. Genotype and phenotype of a severe mitochondrial cardiomyopathy: A recipient of heart transplantation and the genetic control. Biochem Biophys Res Commun, 207:613–620.PubMedCrossRefGoogle Scholar
  25. 25.
    Cann RL, Stoneking M, Wilson AC. 1987. Mitochondrial DNA and human evolution. Nature 325:31–36.PubMedCrossRefGoogle Scholar
  26. 26.
    Horai S, Matsunaga E. 1986. Mitochondrial DNA polymorphism in Japanese: II. Analysis with restriction enzymes of four or five base pair recognition. Hum Genet 72:105–117.PubMedCrossRefGoogle Scholar
  27. 27.
    Hauswirth WW, Laipis P. 1982. Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc Natl Acad Sci USA 79:4686–4690.PubMedCrossRefGoogle Scholar
  28. 28.
    Koehler CM, Lindberg GL, Brown DR, Beitz DF, AE, Mayfield JE, Myers AM. 1991. Replacement of bovine mitochondrial DNA by a sequence variant within one generation. Genetics 129:247–255.PubMedGoogle Scholar
  29. 29.
    Zhang C, Linnane A, Nagley P. 1993. Occurrence of a particular base substitution (3243 A to G) in mitochondrial DNA of tissues of ageing humans. Biochem Biophys Res Commun 195:1104–1110.PubMedCrossRefGoogle Scholar
  30. 30.
    Sato W, Hayasaka K, Komatsu K, Sawaishi Y, Sakemi K, Shoji Y, Takada G. 1992. Genetic analysis of three pedigrees of mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS). Am J Hum Genet 50:655–657.PubMedGoogle Scholar
  31. 31.
    Tzagoloff A. 1982. Mitochondrial Genetics, Mitochondria. New York: Plenum Press.Google Scholar
  32. 32.
    Ozawa T, Tanaka M, Sugiyama S, Ino H, Ohno K, Hattori K, Ohbayashi T, Ito T, Deguchi H, Kawamura K, Nakane Y, Hashiba K. 1991. Patients with idiopathic cardiomyopathy belong to the same mitochondrial DNA gene family of Parkinson’s disease and mitochondrial encephalomyopathy. Biochem Biophys Res Commun 177:518–525.PubMedCrossRefGoogle Scholar
  33. 33.
    Tanaka M, Ino H, Ohno K, Hattori K, Sato W, Ozawa T. 1990. Mitochondrial tRNAIle mutation in fatal infantile cardiomyopathy. Lancet 336:1452.PubMedCrossRefGoogle Scholar
  34. 34.
    Byrne E, Dennett X, Crotty B, Trounce I, Sands JM, Hawkins R, Hammond J, Anderson S, Haan EA, Pollard A. 1986. Dominantly inherited cardioskeletal myopathy with lysosomal glycogen storage and normal acid maltase levels. Brain 109:523–536.PubMedCrossRefGoogle Scholar
  35. 35.
    Nunoda S, Shaddy RE, Bullock EA, Renlund DG, Hammond EH, Yowell RL, Misawa T, Umetani K, Satoh H. 1993. The first pediatric Japanese case to undergo heart transplantation in the Utah cardiac transplant program in the United States. Jpn Circ J 57:873–882.PubMedCrossRefGoogle Scholar
  36. 36.
    Kaplan EL, Meier P. 1958. Nonparametric estimation for incomplete observations. J Am Stat Assoc 52:457–481.CrossRefGoogle Scholar
  37. 37.
    Ozawa T, Katsumata K, Hayakawa M, Yoneda M, Tanaka M, Sugiyama S. 1995. Mitochondrial DNA mutations and survival rate. Lancet 345:189.PubMedCrossRefGoogle Scholar
  38. 38.
    Gerbitz K-D, van den Quweland JMW, Maassen JA, Jaksch M. 1995. Mitochondrial diabetes mellitus: A review. Biochim Biophys Acta 1271:253–260.PubMedGoogle Scholar
  39. 39.
    Hattori K, Tanaka M, Sugiyama S, Obayashi T, Ito T, Satake T, Hanaki Y, Asai J, Nagano M, Ozawa T. 1991. Age-dependent increase in deleted mitochondrial DNA in the human heart: Possible contributing factor to “presbycardia.” Am Heart J 121:1735–1742.PubMedCrossRefGoogle Scholar
  40. 40.
    Grivell LA. 1989. Mitochondrial DNA: Small, beautiful and essential. Nature 341:569–571.PubMedCrossRefGoogle Scholar
  41. 41.
    Hayakawa M, Ogawa T, Tanaka M, Sugiyama S, Ozawa T. 1991. Massive conversion of deoxy-guanosine to 8-hydroxy-guanosine in mouse liver mitochondrial DNA by administration of azidothymidine. Biochem Biophys Res Commun 176:87–93.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Takayuki Ozawa
  • Kazumi Katsumata
  • Mika Hayakawa
  • Makoto Yoneda
  • Masashi Tanaka
  • Satoru Sugiyama

There are no affiliations available

Personalised recommendations