Skip to main content

The Alteration of Signal Transduction System in Heart Failure: Renin-Angiotensin System in Diseased Human Heart

  • Chapter
Heart Hypertrophy and Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 169))

  • 89 Accesses

Abstract

Recently, it has been reported that the signal through the (β-adrenergic signal transduction system in failing heart is reduced. This includes the reduction of (β-adrenergic receptors and Gs-protein, decreased adenylyl activity, and increased Gl-protein (Figure 1). But it is still not clear whether the signal through α-adrenergic receptor changes in failing hearts. From this point of view, we attempted to determine the signal transduction systems in cardiomyopathy using cardiomyopathic hamster hearts. Syrian cardiomyo-pathic hamsters (BIO 14.6 and BIO 53.58) display hereditary abnormalities of the cardiac and skeletal muscles that are inherited as an autosomal recessive trait [1] BIO 14.6 cardiac involvement results in initial myocardial hypertrophy that is followed by cardiac dilatation and death due to congestive heart failure [2]. It is thought that the cardiomyopathic hamster provides a useful model for studying human cardiac diseases, such as hypertrophic cardiomyopathy [3,4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajusz E. 1969. Hereditary cardiomyopathy: A new disease model. Am heart J 77:686–696.

    Article  PubMed  CAS  Google Scholar 

  2. Strobeck JE, Factor SM, Bhan A, Sole M, Liew CC, Fein F, Sonnenblick EH. 1979. Hereditary and acquired cardiomyopathies in experimental animals: Mechanical, biochemical, and structural features. Ann NY Acad Sci 317:598–588.

    Google Scholar 

  3. Homburger F, Baker JR, Nixon CW, Whitney R. 1962. Primary generalized polymyophaty and cardiac necrosis in an inbred line of Syrian hamsters. Med Exp 6:339–345.

    Google Scholar 

  4. Bajuz E, Baker JR, Nixon CW, Homburger F. 1969. Spontaneous hereditary myocardial degeneration and congestive heart failure in strain of Syrian hamsters. Ann NY Acad Sci 156:105–129.

    Article  Google Scholar 

  5. Brown JH, Buxton IL, Brunton LL. 1985. α1-adrenergic and muscarinic cholinergic stimulation of phosphoinositide hydrolysis in adult rat cardiomyocytes. Circ Res 57:532–537.

    PubMed  Google Scholar 

  6. Fasolato C, Pandiella A, Meldolesi J, Pozzan T. 1988. Generation of inositol phosphate, cytosolic Ca2+, and ionic fluxes in PC12 cells treated with bradykinin. J Biol Chem 263:17350–17359.

    PubMed  CAS  Google Scholar 

  7. Baker KM, Singer HA. 1988. Identification and characterization of guinea pig angiotensin II ventricular and atrial receptors: Coupling to inositol phosphate production. Circ Res 62: 896–906.

    PubMed  CAS  Google Scholar 

  8. Dubyak GR, Cowen DS, Meuller LM. 1988. Activation of inositol phospholipid breakdown in HL60 cells by P2-punnergic receptors for extracellular ATP. J Biol Chem 263:18108–18117.

    PubMed  CAS  Google Scholar 

  9. Berridge MJ. 1984. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J 220:345–360.

    PubMed  CAS  Google Scholar 

  10. Williamson JR, Cooper RH, Joseph NE, Thomas AP. 1985. Inositol trisphosphate and diacylglycerol as intracellular second messengers in liver. Am J Phys 248:C203–C216.

    CAS  Google Scholar 

  11. Nishizuka Y. 1983. Phospholipid degradation and signal translation for protein phosphorylation. Trend Biochem Sci 8:13–16.

    Article  CAS  Google Scholar 

  12. Putney JW. 1978. Formation and actions of calcium-mobilizing messenger, inositol 1,4,5-trisphosphate. Am J Physiol 252:G149–G157.

    Google Scholar 

  13. Ehrlich BE, Watras J. 1988. Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. Nature 336:583–586.

    Article  PubMed  CAS  Google Scholar 

  14. Jeunemaitre X, Soubrier F, Kotettev YU, Lifton RP, William CS, Charru A, Hunt SC, Hopkins PN, William RR, Lalouel JM, Corvol P. 1992. Molecular basis of human hypertension: Role of angiotensinogen. Cell 71:169–180.

    Article  PubMed  CAS  Google Scholar 

  15. Kunapuli SP, Kumar A. 1987. Molecular cloning of human angiotensinogen cDNA and evidence for the presence of its mRNA in rat heart. Circ Res 60:786–790.

    PubMed  CAS  Google Scholar 

  16. Panthier JJ, Foote S, Chambraud B, Strosberg AD, Corvol P, Rougeon F. 1982. Complete amino acid sequence and maturation of the mouse submaxillary gland renin precursor. Nature 298:90–92.

    Article  PubMed  CAS  Google Scholar 

  17. Ohkubo H, Nakayama K, Tanaka T, Nakanishi S. 1986. Tissue distribution of rat angiotensinogen mRNA and structural analysis of its heterogeneity. J Biol Chem 261:319–323.

    PubMed  CAS  Google Scholar 

  18. Naftilan AJ, Zuo WM, Ingelfinger J, Ryan TJ Jr, Pratt RE, Dzau VJ. 1991. Localization and differential regulation of angiotensinogen mRNA expression in vessel wall. J Clin Invest 87:1300–1311.

    Article  PubMed  CAS  Google Scholar 

  19. Dzau VJ. 1987. Evolution of the clinical management of hypertension Emerging role of open as initial therapy. Am J Med 82 (Suppl lA):36–43.

    Article  PubMed  CAS  Google Scholar 

  20. Kawaguchi H, Shoki M, Sano H, Sawa H, Kudo T, Okamoto H, Sakata Y, Yasuda H. 1991. Phospholipid metabolism in cardiomyopahic hamster heart Circ Res 69:1015–1021.

    PubMed  CAS  Google Scholar 

  21. Kawaguchi H, Sano H, Iizuka K, Okada H, Kudo T, Kageyama T, Muramoto S, Murakami T, Okamoto H, Mochizuki N, Kitabatake A. 1993. Phosphatidylinositol metabolism in hypertrophic rat heart Circ Res 72:966–972.

    PubMed  CAS  Google Scholar 

  22. Kawaguchi H, Urasawa K, Sawa H, Kudo T, Yasuda H. 1992. The studies of the cell damage and cell proliferation factors which induce cardiomyopathy. Jpn Circ J 56:1037–1044.

    Article  PubMed  CAS  Google Scholar 

  23. Kawaguchi H, Sano H, Iizuka K, Okada H, Kudo T, Okamoto H, Kitabatake A. 1993. Increased calcium release from sarcoplasmic reticulum stimulated by inositol trisphosphate in spontaneously hypertensive rat heart cells. Mol Cell Biochem 119:51–57.

    Article  PubMed  CAS  Google Scholar 

  24. Sawa H, Tokuchi F, Mochizuki N, Endo Y, Furuta Y, Shinohara T, Takada A, Kawaguchi H, Yasuda H, Nagashima K. 1992. Expression of the angiotensinogen gene and its localization of its protein in the human heart. Circulation 86:138–146.

    PubMed  CAS  Google Scholar 

  25. Sawa H, Kawaguchi H, Mochizuki N, Endo Y, Kudo T, Tokuchi F, Fujioka Y, Nagashima K, Kitabatake A. 1994. Distribution of angiotensinogen in diseased human heart. J Mol Biochem 132:15–23.

    Article  CAS  Google Scholar 

  26. Chomczynski P, Sacchi N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phcnol-chloroform extraction. Anal Biochcm 162:156–159.

    Article  CAS  Google Scholar 

  27. Boss B. 1984. An improved in vitro immunization procedure for the production of monoclonal antibodies against neural and other antigens. Brain Res 291:193–196.

    Article  PubMed  CAS  Google Scholar 

  28. Miyazaki S, Aimi Y, Fujimura M, Tohyamal, Kimura H. Immunoblot method is a good procedure for testing the cross-reactivity of anti-PYY, NPY, PP. Proceedings of the 30th Japan Histocytochemistry Meeting, p 143.

    Google Scholar 

  29. Mochizuki N, Sawa H, Yasuda H, Shinohara T, Nagashima K, Yamaji T, Ohnuma N, Hall WW. 1991. Distribution of atrial natriuretic peptide in the conduction system and ventricular muscles of the human heart Virchows Arch A Pathol Anat 418:9–16.

    Article  CAS  Google Scholar 

  30. Weber KT, Brilla CG. 1991. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 83:1849–1865.

    PubMed  CAS  Google Scholar 

  31. Ganten D, Ganten U, Granger P, Boucher R, Genest J. 1972. Renin in heart muscle and arterial tissue. Verh Dtsch Ges Kreislauf Forschung 38:268.

    CAS  Google Scholar 

  32. Re RN, Michalik RJ, Dzau VJ. 1983. Cardiac myocytes contain renin. Clin Res 31:845A.

    Google Scholar 

  33. Dzau VJ, Ellison KE, Onellete AJ. 1985. Expression and regulation of renin in the mouse heart Clin Res 33:181.

    Google Scholar 

  34. Dzau VJ. 1988. Cardiac renin-angiotensin system: Molecular and functional aspect. Am J Med 84:22–27.

    Article  PubMed  CAS  Google Scholar 

  35. Lindpainter K, Jin M, Wilhelm MJ, Suzuki F, Linz W, Schoelkens BA, Ganten D. 1988. Intracardiac generation of angiotensin and its physiologic role. Circulation 77(Suppl I): 118–123.

    Google Scholar 

  36. Field LJ, McGrowan R, Dickinson DP, Gross KW. 1984. Tissue and gene specificity of mouse renin expression. Hypertension 6:597.

    PubMed  CAS  Google Scholar 

  37. Dzau VJ, Ingelfinger J, Pratt RE, Ellison KE. 1986. Identification of renin and angiotensin messenger RNA sequences in mouse and rat brains. Hypertension 8:544.

    PubMed  CAS  Google Scholar 

  38. Ganten D, Ludwig G, Hennhoefer C. 1986. Genetic control of renin in the tissues of different strains of mice. Naunyn Schmiedegergs Arch Pathol 332:R59.

    Google Scholar 

  39. Suzuki F, Hellmann T, Murakami K, Ludwig G. 1987. Expression of the genes for renin and angiotensinogen in tissues of rats. Naunyn Schmiedgergs Arch Pathol 335:R59.

    Google Scholar 

  40. Suzuki J, Matsubara H, Urakami M, Inada M. 1993. Rat angiotensin II (type 1A) receptor mRNA regulation and subtype expression in myocardial growth and hypertrophy. Circ Res 73:439–447.

    PubMed  CAS  Google Scholar 

  41. Hirsh AT, Talsness CE, Schunkert H, Paul M, Dzau VJ. 1991. Tissue-specific activation of cardiac angiotensinogen converting enzyme in experimental heart failure. Circ Res 69: 475–482.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kawaguchi, H., Kitabatake, A. (1995). The Alteration of Signal Transduction System in Heart Failure: Renin-Angiotensin System in Diseased Human Heart. In: Dhalla, N.S., Pierce, G.N., Panagia, V., Beamish, R.E. (eds) Heart Hypertrophy and Failure. Developments in Cardiovascular Medicine, vol 169. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1237-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1237-6_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8526-7

  • Online ISBN: 978-1-4613-1237-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics