Depression of Sarcolemmal Phospholipase C Activity in Congestive Heart Failure

  • Vincenzo Panagia
  • Johanna T. A. Meij
  • Nasrin Mesaeli
  • Rohit K. Singal
  • Naranjan S. Dhalla
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 169)


The bioactivc phospholipids of the cardiac cell membrane (sarcolemma) and their signaling pathways are emerging as important mediators of the myocardial response to external stimuli, including catecholamines [1]. It is known that the activity of the sympathetic nervous system is increased in congestive heart failure; this results in elevated levels of plasma catecholamines, which downregulate the β-adrenoceptors in failing hearts, leading to subsensitivity of the β-agonist-mediated biochemical and mechanical responses [2]. The α1-adrenoceptors, which are associated with the positive inotropic effect of catecholamines via activation of the membranal phosphoinositide-phospholipase C (PLC) [1], were found to remain unchanged [3] or to increase [4,5] in heart failure. In view of the downregulation of the β-adrenoceptors, the α1 type reflects a greater proportion of the total adrenoceptor population in the failing ventricle [3–5]. Thus α1-adrenoceptors can be seen to play a dominant role in eliciting the positive inotropic action of catecholamines in failing heart [6].


Congestive Heart Failure Positive Inotropic Effect Sarcolemmal Membrane Positive Inotropic Action Cardiac Cell Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lamcrs JMJ, De Jongc HW, Panagia V, Van Heugten HAA. 1993. Receptor-mediated signalling pathways acting through hydrolysis of membrane phospholipids in cardiomyocytes. Cardioscience 4:121–131.Google Scholar
  2. 2.
    Homey CJ, Vatner SF, Vatner DE. 1991. β-adrenergic receptor regulation in the heart in pathophysiological states: Abnormal adrenergic responsiveness in cardiac disease. Annu Rev Physiol 53:137–159.CrossRefGoogle Scholar
  3. 3.
    Bristow MR, Minole W, Rasmussen R, Hershberger RE, Hoffman BB. 1988. Alpha,-adrenergic receptors in the nonfailing and failing human heart. J Pharmacol Exp Ther 247:1039–1045.PubMedGoogle Scholar
  4. 4.
    Dixon IMC, Dhalla NS. 1991. Alterations in cardiac adrenoceptors in congestive heart failure secondary to myocardial infarction. Cor Art Dis 2:805–814.Google Scholar
  5. 5.
    Vago T, Bevilacqua M, Norbiato G, Baldi G, Chebat E, Bertora P, Baroldi G, Accinni R. 1989. Identification of α1-adrenergic receptors on sarcolemma from normal subjects and patients with idiopathic dilated cardiomyopathy: Characteristics and linkage to GTP-binding protein. Circ Res 64:474–481.PubMedGoogle Scholar
  6. 6.
    Böhm M, Diet F, Feiler G, Kempkes B, Erdmann E. 1988. α-Adrenoceptors and α-adrenoceptor-mediated positive inotropic effects in failing human myocardium. J Cardiovasc Pharmacol 12:357–364.PubMedCrossRefGoogle Scholar
  7. 7.
    Lamorte VJ, Thorburn J, Alisher D, Spiegel A, Brown JH, Chien KR, Feramisco JR, Knowlton KV. 1994. Gq- and ras-dependent pathways mediate hypertrophy of neonatal rat ventricular myocytes following α1-adrenergic stimulation. J Biol Chem 269:13490–13496.PubMedGoogle Scholar
  8. 8.
    Pucéat M, Hilal-Dandan R, Strulovici B, Brunton LL, Brown JH. 1994. Differential regulation of protein kinase C isoforms in isolated and adult rat cardiomyocytes. J Biol Chem 24:16938–16944.Google Scholar
  9. 9.
    Gilbert JC, Shiroyama T, Pappano AJ. 1991. Inositol trisphosphate promotes Na-Ca exchange current by releasing calcium from sarcoplasmic reticulum in cardiac myocytes. Circ Res 69:1632–1639.PubMedGoogle Scholar
  10. 10.
    Quist EE, Foresman BH, Vasan R, Quist CW. 1994. Inositol tetrakisphosphate stimulate a novel ATP-independent Ca2+ uptake mechanism in cardiac junctional sarcoplasmic reticulum. Biochcm Biophys Res Commun 204:69–75.CrossRefGoogle Scholar
  11. 11.
    Wolf RA. 1990. Synthesis, transfer and phosphorylation of phosphoinositides in cardiac membranes. Am J Physiol 259:C987–C994.PubMedGoogle Scholar
  12. 12.
    Dixon IMC, Lee S-L, Dhalla NS. 1990. Nitrendipine binding in congestive heart failure due to myocardial infarction. Circ Res 66:782–788.PubMedGoogle Scholar
  13. 13.
    Cockroft S, Thomas GMH. 1992. Inositol-lipid-specific phospholipase C isoenzymes and their differential regulation by receptors. Biochem J 288:1–14.Google Scholar
  14. 14.
    Wolf RA. 1992. Association of phospholipase C-δ with a highly enriched preparation of canine sarcolemma. Am J Physiol 263:C1021–1028.PubMedGoogle Scholar
  15. 15.
    Selye H, Bajusz E, Grasso S, Mendell P. 1960. Simple techniques for the surgical occlusion of coronary vessels in the rat. Angiology 11:398–407.PubMedCrossRefGoogle Scholar
  16. 16.
    Taira Y, Panagia V, Shah KR, Beamish RE, Dhalla NS. 1990. Stimulation of phospholipid N-methylation by isoproterenol in rat hearts. Circ Res 66:28–36.PubMedGoogle Scholar
  17. 17.
    Pitts BJR. 1979. Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles. J Biol Chem 245:6232–6235.Google Scholar
  18. 18.
    Meij JTA, Panagia V. 1992. The substrate specificity of phosphoinositide-phospholipase C in rat heart sarcolemma. Mol Cell Biochem 116:27–31.PubMedCrossRefGoogle Scholar
  19. 19.
    Dixon IMC, Hata T, Dhalla NS. 1992. Sarcolemmal calcium transport in congestive heart failure due to myocardial infarction in rats. Am J Physiol 262:H1387–H1394.PubMedGoogle Scholar
  20. 20.
    Rhee SG, Kim H, Suh PG, Choi WC. 1991. Multiple forms of phosphoinositide-specific phospholipase C and different modes of activation. Biochem Soc Trans 19:337–341.PubMedGoogle Scholar
  21. 21.
    Exton JH. 1994. Phosphoinositide phospholipases and G proteins in hormone action. Annu Rev Physiol 56:349–369.PubMedCrossRefGoogle Scholar
  22. 22.
    Wu D, Katz A, Lee C-H, Simon MI. 1993. Activation of phospholipase C by α1-adrenergic receptors is modified by the α subunits of Gq family. J Biol Chem 267:25798–25802.Google Scholar
  23. 23.
    Meij JTA, Suzuki S, Panagia V, Dhalla NS. 1994. Oxidative stress modifies the activity of cardiac sarcolemmal phospholipase C. Biochim Biophys Acta 1199:6–12.PubMedGoogle Scholar
  24. 24.
    Prasad K, Kalra J, Massey KL, Bharadwaj JB. 1989. Increased production of oxygen free radicals by polymorphonuclear leukocytes in heart failure due to aortic stenosis. Angiology 40:472–478.PubMedCrossRefGoogle Scholar
  25. 25.
    Dhalla NS, Yates JC, Naimark B, Dhalla KS, Beamish RE, Ostadal B. 1992. Cardiotoxicity of catecholamines and related agents. In: Acosta D Jr, ed. Cardiovascular Toxicology, 2nd ed. New York: Raven Press, pp 239–282.Google Scholar
  26. 26.
    Kaul N, Siveski-Iliskovic N, Hill M, Slezak J, Singal PK. 1993. Free radicals and the heart. J Pharmacol Toxicol Methods 30:55–67.PubMedCrossRefGoogle Scholar
  27. 27.
    Meij JTA, Paolillo G, Bezstarosti K, Verdouw PD, Panagia V, Lamers JMJ. 1989. Discrete interactions between phosphatidyl ethanolamine-N-methylation and phosphatidylinositol-bisphosphate hydrolysis in rat myocardium. Mol Cell Biochem 90:137–144.PubMedCrossRefGoogle Scholar
  28. 28.
    Kurz T, Wolf RA, Corr PB. 1993. Phosphatidic acid stimulates inositol 1,4,5-trisphosphate production in adult cardiac myocytes. Circ Res 72:701–706.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Vincenzo Panagia
  • Johanna T. A. Meij
  • Nasrin Mesaeli
  • Rohit K. Singal
  • Naranjan S. Dhalla

There are no affiliations available

Personalised recommendations