Skip to main content

Cardiac Remodeling by Alterations in Phospholamban Protein Levels

  • Chapter
Heart Hypertrophy and Failure

Abstract

Heart failure is a low cardiac output syndrome characterized by both systolic and diastolic dysfunction. Hallmarks of cardiac failure include marked ventricular hypertrophy or dilation, decreased velocity of contraction, decreased rate of relaxation, and abnormal cytosolic calcium handling. Alterations in these parameters can be explained by alterations in cardiac sarcoplasmic reticulum (SR) function. The cardiac SR plays a critical role in cardiac excitation-contraction coupling by regulating the rate of myocardial relaxation, which is the rate-limiting step in the cardiac contraction/relaxation cycle [1,2]. The rate and extent of myocardial relaxation is determined by the rate and extent of Ca2+ uptake from the myoplasm into the SR. Thus, the SR functions as the primary regulator of myocardial intracellular Ca2+ levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fleischer S, Inui M. 1989. Biochemistry and biophysics of excitation-contraction coupling. Annu Rev Biophys Biophys Chem 18:333–364.

    Article  PubMed  CAS  Google Scholar 

  2. Arai M, Matsui H, Periasamy M. 1994. Sarcoplasmic reticulum gene expression in cardiac-hypertrophy and heart failure. Circ Res 74:555–564.

    PubMed  CAS  Google Scholar 

  3. Kranias EG, Mandel F, Wang T, Schwartz A. 1980. Mechanism of the stimulation of calcium ion-dependent adenosine triphosphatase of cardiac sarcoplasmic reticulum by adenosine 3′:5′-monophosphate-dependent protein kinase. Biochemistry 19:5434–5439.

    Article  PubMed  CAS  Google Scholar 

  4. Tada M, Yamada M, Ohmori F, Kuzuya T, Inui M, Abe H. 1980. Transient state kinetic studies of calcium ion-dependent adenosine triphosphatase and calcium transport by cardiac sarcoplasmic reticulum. Effect of cyclic AMP-dependent protein kinase-catalyzed phosphorylation of phospholamban. J Biol Chem 255:1985–1992.

    PubMed  CAS  Google Scholar 

  5. Davis BA, Schwartz A, Samaha FJ, Kranias EG. 1983. Regulation of cardiac sarcoplasmic reticulum calcium transport by calcium-calmodulin dependent phosphorylation. J Biol Chem 258:13587–13591.

    PubMed  CAS  Google Scholar 

  6. Movsesian MA, Nishikawa M, Adelstein RS. 1984. Phosphorylation of phospholamban by calcium-activated, phospholipid-dependent protein kinase. J Biol Chem 259:8029–8038.

    PubMed  CAS  Google Scholar 

  7. Kranias EG, Gupta RC, Jakab G, Kim HW, Steenaart NAE, Rapundalo ST. 1988. The role of protein kinases and protein phosphatases in the regulation of cardiac sarcoplasmic reticulum function. Mol Cell Biochem 82:37–44.

    Article  PubMed  CAS  Google Scholar 

  8. Edes I, Kranias EG. 1989. Regulation of cardiac sarcoplasmic reticulum function by phospholamban. Membr Biochem 7:175–192.

    Article  Google Scholar 

  9. Kim HW, Steenaart NAE, Ferguson DG, Kranias EG. 1990. Functional reconstitution of the cardiac sarcoplasmic reticulum Ca2+-ATPase with phospholamban in phospholipid vesicles. J Biol Chem 265:1702–1709.

    PubMed  CAS  Google Scholar 

  10. Simmerman HKB, Collins JH, Theibert JL, Wegener AD, Jones LR. 1986. Sequence analysis of phospholamban: Identification of phosphorylation sites and two major structural domains. J Biol Chem 261:13333–13341.

    PubMed  CAS  Google Scholar 

  11. Kranias EG. 1985. Regulation of Ca2+ transport by phosphoprotein phosphatase activity associated with cardiac sarcoplasmic reticulum. J Biol Chem 260:11006–11010.

    PubMed  CAS  Google Scholar 

  12. Kranias EG, Solaro RJ. 1982. Phosphorylation of troponin I and phospholamban during catecholamine stimulation of rabbit heart. Nature 298:182–184.

    Article  PubMed  CAS  Google Scholar 

  13. Lindemann JP, Jones LR, Hathaway DR, Henry BG, Watanabe AM. 1983. β-adrenergic stimulation of phospholamban phosphorylation and Ca2+-ATPase activity in guinea pig ventricles. J Biol Chem 258:4516–4525.

    Google Scholar 

  14. Miyakoda G, Yoshida A, Takisawa H, Nakamura T. 1987. β-adrenergic regulation of contractility and protein phosphorylation in spontaneously beating isolated rat myocardial cells. J Biochem 102:211–224.

    PubMed  CAS  Google Scholar 

  15. Mundina de Weilenmann C, Vittone L, de Cingolani G, Mattiazi A. 1987. Dissociation between contraction and relaxation: The possible role of phospholamban phosphorylation. Basic Res Cardiol 82:507–516.

    Article  PubMed  CAS  Google Scholar 

  16. Wegener AD, Simmerman HKB, Lindemann JP, Jones LR. 1989. Phospholamban phosphorylation in intact ventricles. J Biol Chem 264:11468–11474.

    PubMed  CAS  Google Scholar 

  17. Talosi L, Edes I, Kranias EG. 1993. Intracellular mechanisms mediating the reversal of β-adrenergic stimulation in intact beating hearts. Am J Physiol 264:H791–H797.

    PubMed  CAS  Google Scholar 

  18. Edes I, Kranias EG. 1990. Phospholamban and troponin I are substrates for protein kinase C in vitro but not in intact beating guinea pig hearts. Circ Res 67:394–400.

    PubMed  CAS  Google Scholar 

  19. Talosi L, Kranias EG. 1992. The effect of α-adrenergic stimulation on activation of protein kinase C and phosphorylation of proteins in intact rabbit hearts. Circ Res 70:670–678.

    PubMed  CAS  Google Scholar 

  20. Hicks MJ, Shigekawa M, Katz AM. 1979. Mechanism by which cyclic adenosine 3′:5′-monophosphate-dependent protein kinase stimulates calcium transport in cardiac sarcoplasmic reticulum. Circ Res 44:384–391.

    PubMed  CAS  Google Scholar 

  21. Tada M, Inui M, Yamada M, Kadoma MA, Kuzuya T, Abe H, Kakiuchi S. 1983. Effects of phospholamban phosphorylation catalyzed by adenosine 3′:5′-monophosphate — and calmodulin-dependent protein kinases on calcium transport ATPase of cardiac sarcoplasmic reticulum. J Mol Cell Cardiol 15:335–346.

    Article  PubMed  CAS  Google Scholar 

  22. Kranias EG. 1985. Regulation of Ca2+ transport by cyclic 3′:5′-AMP-dependent and calcium-calmodulin-dependent phosphorylation of cardiac sarcoplasmic reticulum. Biochim. Biophys. Acta 844:193–199.

    CAS  Google Scholar 

  23. Morris GL, Cheng H, Colyer J, Wang JH. 1991. Phospholamban regulation of cardiac sarcoplasmic reticulum (Ca2+-Mg2+)-ATPase: Mechanism of regulation and site of monoclonal antibody interaction. J Biol Chem 266:11270–11275.

    PubMed  CAS  Google Scholar 

  24. Colyer J, Wang JH. 1991. Dependence of cardiac sarcoplasmic reticulum calcium pump activity on the phosphorylation status of phospholamban. J Biol Chem 266:17486–17493.

    PubMed  CAS  Google Scholar 

  25. Sasaki T, Inui M, Kimura Y, Kuzuya T, Tada M. 1992. Molecular mechanism of regulation of Ca2+-pump ATPase by phospholamban in cardiac sarcoplasmic reticulum: Effects of synthetic phospholamban peptides on Ca2+-pump ATPase. J Biol Chem 267:1674–1679.

    PubMed  CAS  Google Scholar 

  26. Arai M, Alpert NR, MacLennan DH, Barton P, Periasamy M. 1993. Alterations in sarcoplasmic reticulum gene expression in human heart failure: A possible mechanism in systolic and diastolic properties of the failing myocardium. Circ Res 72:463–469.

    PubMed  CAS  Google Scholar 

  27. Mercadier J-J, Lompre A-M, Due P, Boheler KR, Fraysse J-B, Wisnewsky C, Allen PD, Komajda M, Schwartz K. 1990. Altered sarcoplasmic reticulum Ca2+-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest 85:305–309.

    Article  PubMed  CAS  Google Scholar 

  28. Feldman AM, Ray PE, Silan CM, Mercer JA, Minobe W, Bristow MR. 1991. Selective gene expression in failing human heart: Quantification of steady-state levels of mRNA in endomyocardial biopsies using the polymerase chain reaction. Circ Res 83:1866–1872.

    CAS  Google Scholar 

  29. Nagai R, Zarain-Herzberg A, Brandl C, Fujii J, Tada M, MacLennan DH, Alpert NR, Periasamy M. 1989. Regulation of myocardial Ca2+-ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone. Proc Natl Acad Sci USA 86:2966–2970.

    Article  PubMed  CAS  Google Scholar 

  30. Rockman HA, Ono S, Ross RS, Jones LR, Karimi M, Bhargava V, Ross J Jr, Chien KR. 1994. Molecular and physiological alterations in murine ventricular dysfunction. Proc Natl Acad Sci USA 91:2694–2698.

    Article  PubMed  CAS  Google Scholar 

  31. Amidi M, Leon DF, DeGroot WJ, Kroetz FW, Leonard JJ. 1968. Effect of thyroid state on myocardial contractility and ventricular ejection rate in man. Circulation 38:229–239.

    PubMed  CAS  Google Scholar 

  32. Grossman W, Robin NI, Johnson LW, Brooks HL, Selenkow HA, Dexter L. 1971. The enhanced myocardial contractility of thyrotoxicosis. Ann Intern Med 74:869–874.

    PubMed  CAS  Google Scholar 

  33. Rohrer D, Dillman WH. 1988. Thyroid hormone markedly increases the mRNA coding for sarcoplasmic reticulum Ca2+-ATPase in the rat heart. J Biol Chem 263:6941–6944.

    PubMed  CAS  Google Scholar 

  34. Arai M, Otsu K, MacLennan DH, Alpert NR, Periasamy M. 1991. Effect of thyroid hormone on the expression of mRNA encoding sarcoplasmic reticular proteins. Circ Res 69:266–276.

    PubMed  CAS  Google Scholar 

  35. Zarain-Herzberg A, MacLennan DH, Periasamy M. 1990. Characterization of rabbit cardiac sarco(endo)plasmic reticulum Ca2+-ATPase gene. J Biol Chem 265:4670–4677.

    PubMed  CAS  Google Scholar 

  36. Beekman RI, Hardeveld C, Simonides WS. 1989. On the mechanism of the reduction by thyroid hormone of β-adrenergic relaxation rate stimulation in rat heart. Biochem J 259:229–236.

    PubMed  CAS  Google Scholar 

  37. Kiss E, Jakab G, Kranias EG, Edes I. 1994. Thyroid hormone-induced alterations in phospholamban protein expression: Regulatory effects on sarcoplasmic reticulum Ca2+-transport and myocardial relaxation. Circ Res 75:245–251.

    PubMed  CAS  Google Scholar 

  38. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ Yin M, Allen R, Sidman C, Proetzel G, Calvin D, Annuziata N, Doetschman T. 1992. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359:693–699.

    Article  PubMed  CAS  Google Scholar 

  39. Doetschman T. 1994. Gene transfer in embryonic stem cells. In: Pickert C, ed. Transgenic Animal Technology: A Laboratory Handbook. San Diego, CA: Academic Press, pp 115–146.

    Google Scholar 

  40. Luo W, Grupp IL, Harrer J, Ponniah S, Grupp G, Duffy JJ, Doetschman T, Kranias EG. 1994. Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of β-agonist stimulation. Circ Res 75:401–409.

    PubMed  CAS  Google Scholar 

  41. Fujii J, Zarain-Herzberg A, Huntington FW, Tada M, MacLennan DH. 1991. Structure of the rabbit phospholamban gene, cloning of the human cDNA, and assignment of the gene to human chromosome 6. J Biol Chem 266:11669–11675.

    PubMed  CAS  Google Scholar 

  42. Toyofuku T, Zak R. 1991. Characterization of cDNA and genomic sequences encoding a chicken phospholamban. J Biol Chem 266:5375–5383.

    PubMed  CAS  Google Scholar 

  43. Johns DC, Feldman AM. 1992. Identification of a highly conserved region at the 5′ flank of the phospholamban gene. Biochem Biophys Res Commun 188:927–933.

    Article  PubMed  CAS  Google Scholar 

  44. Fujii J, Ueno A, Kitano K, Tanaka S, Kodoma M, Tada M. 1987. Complete cDNA-derived amino acid sequence of canine cardiac phospholamban. J Clin Invest 79:301–304.

    Article  PubMed  CAS  Google Scholar 

  45. Fujii J, Lytton J, Tada M, MacLennan DH. 1988. Rabbit cardiac and show-twitch muscle express the same phospholamban gene. FEBS Lett 227:51–55.

    Article  PubMed  CAS  Google Scholar 

  46. Verboomen H, Wuytack F, Eggermont JA, De Jaegene S, Missiaen L, Raeymaekers L, Casteels R. 1989. cDNA cloning and sequencing of phospholamban from pig stomach smooth muscle. Biochem J 262:353–356.

    PubMed  CAS  Google Scholar 

  47. Ganim JR, Luo W, Ponniah S, Grupp I, Kim HW, Ferguson DG, Kadambi V, Neumann JC, Doetschman T, Kranias EG. 1992. Mouse phospholamban gene expression during development in vivo and in vitro. Circ Res 71:1021–1030.

    PubMed  CAS  Google Scholar 

  48. Pagani ED, Solaro RJ. 1984. Coordination of cardiac myofibrillar and sarcotubular activities in rats exercised by swimming. Am J Physiol 247:909–915.

    Google Scholar 

  49. Kranias EG, Garvey JL, Srivastava RD, Solaro RJ. 1985. Phosphorylation and functional modifications of sarcoplasmic reticulum and myofibrils in isolated rabbit hearts stimulated with isoprenaline. Biochem J 226:113–121.

    PubMed  CAS  Google Scholar 

  50. Grupp IL, Subramaniam A, Hewett TE, Robbins J, Grupp G. 1993. Comparison of normal, hypodynamic, and hyperdynamic mouse hearts using isolated work-performing heart preparations. Am J Physiol 265:H1401–H1410.

    PubMed  CAS  Google Scholar 

  51. Garvey JL, Kranias EG, Solaro RJ. 1988. Phosphorylation of C-protein, troponin I and phospholamban in isolated rabbit hearts. Biochem J 249:709–714.

    PubMed  CAS  Google Scholar 

  52. Palmer CJ, Scott BT, Jones LR. 1991. Purification and complete sequence determination of the major plasma membrane substrate for cAMP-dependent protein kinase and protein kinase C in myocardium. J Biol Chem 266:11126–11130.

    PubMed  CAS  Google Scholar 

  53. Presti CG, Jones LR, Lindemann JP. 1985. Isoproterenol-induced phosphorylation of a 15-kilodalton sarcolemmal protein in intact myocardium. J Biol Chem 260:3860–3867.

    PubMed  CAS  Google Scholar 

  54. Lindemann JP. 1986. α-Adrenergic stimulation of sarcolemmal protein phosphorylation and slow responses in intact myocardium. J Biol Chem 261:4860–4867.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Luo, W. et al. (1995). Cardiac Remodeling by Alterations in Phospholamban Protein Levels. In: Dhalla, N.S., Pierce, G.N., Panagia, V., Beamish, R.E. (eds) Heart Hypertrophy and Failure. Developments in Cardiovascular Medicine, vol 169. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1237-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1237-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8526-7

  • Online ISBN: 978-1-4613-1237-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics