Skip to main content

Cardiac Contractile Failure Caused by Disturbances in Myofibrillar Energy Supply and Pathogenesis of Cardiomyopathies

  • Chapter
Pathophysiology of Heart Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 168))

  • 162 Accesses

Abstract

It is well known that cardiac contractile failure caused by myocardial ischemia occurs due to both insufficient energy supply to the myofibrils and accumulation of products of adenine nucleotide breakdown, which decrease the Ca++ sensitivity of myofibrils. However, in some cardiac pathologies, such as cardiomyopathies, a similar reduction of high-energy phosphates is not associated with any change in coronary flow. Therefore, identification of peculiar features of cardiac contractile failure induced by energy deprivation not associated with a reduction of coronary flow may contribute to our understanding of the pathogenesis of cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kapelko VI, Kupriyanov VV, Novikova NA, Lakomkin VL, Steinschneider AY, Severina MY, Veksler VI, Saks VA. 1988. The cardiac contractile failure induced by chronic creatine and phosphocreatine deficiency. J Mol Cell Cardiol 20:465–479.

    Article  PubMed  CAS  Google Scholar 

  2. Kapelko VI, Veksler VI, Popovich MI, Ventura-Clapier R. 1991. Energy-linked functional alterations in experimental cardiomyopathies. Am J Physiol 261 (4, Suppl):39–44.

    PubMed  CAS  Google Scholar 

  3. Frederiksen JW, Weiss JL, Weisfeldt ML. 1978. Time constant of isovolumic pressure fall: determinants in the working left ventricle. Am J Physiol 235:H701–H706.

    PubMed  CAS  Google Scholar 

  4. Wyman RM, Farhi ER, Bing OHL, Johnson RG, Weintraub RM, Grossman W. 1989. Comparative effects of hypoxia and ischemia in the isolated, blood-perfused heart: evaluation of left ventricular diastolic chamber distensibility and wall thickness. Circ Res 64:121–128.

    PubMed  CAS  Google Scholar 

  5. Kupriyanov VV, Lakomkin VL, Korchazhkina OV, Stepanov VA, Steinschneider AY, Kapelko VI. 1991. Cardiac contractile function, oxygen consumption rate and cytosolic phosphates during inhibition of electron flux by amytal—a 31P-NMR study. Bioch Bioph Acta 1058:386–399.

    Article  CAS  Google Scholar 

  6. Allen DG, Orchard CH. 1983. Intracellular calcium concentration during hypoxia and metabolic inhibition in mammalian ventricular muscle. J Physiol (Lond) 339:107–122.

    CAS  Google Scholar 

  7. Leijendekker WJ, Gao WD, ter Keurs HEDJ. 1990. Unstimulated force during hypoxia of rat cardiac muscle: stiffness and calcium dependence. Am J Physiol 258 (Heart Circ Physiol 27):H861–H869.

    PubMed  CAS  Google Scholar 

  8. Arnold GF, Kosche F, Miessner E, Neitzert A, Lochner W. 1968. The importance of the perfusion pressure in the coronary arteries for the contractility and the oxygen consumption of the heart. Pflugers Arch 299:339–356.

    Article  CAS  Google Scholar 

  9. Kapelko VI, Veksler VI, Novikova NA. 1978. Myocardial contracture caused by disturbances in energy production: mechanism and significance. In Smirnov VN, Katz AM (eds.), Myocardial Metabolism. Harwood Academic Publishers: London, pp. 619–638.

    Google Scholar 

  10. Bessman SP, Geiger PJ. 1981. Transport of energy in muscle: the phosphorylcreatine shuttle. Science 211:448–452.

    Article  PubMed  CAS  Google Scholar 

  11. McClellan G, Weisberg A, Winegrad S. 1983. Energy transport from mitochondria to myofibril by a creatine phosphate shuttle in cardiac cells. Am J Physiol 245:C423–C427.

    PubMed  CAS  Google Scholar 

  12. Saks VA, Ventura-Clapier R, Huchua ZA, Preobrazhensky AN, Emelin IV. 1984. Creatine kinase in regulation of heart function and metabolism. I. Further evidence for compart-mentation of adenine nucleotides in cardiac myofibrillar and sarcolemmal coupled ATP-ase-creatine kinase systems. Biochim Biophys Acta 803:254–264.

    Article  PubMed  CAS  Google Scholar 

  13. Veksler VI, Kapelko VI. 1984. Creatine kinase in regulation of heart function and metabolism. II. The effect of phosphocreatine on the rigor tension of EGTA-treated rat myocardial fibers. Biochim Biophys Acta 803:265–270.

    Article  PubMed  CAS  Google Scholar 

  14. Fossel ET, Hoefeler H. 1987. Complete inhibition of creatine kinase in isolated perfused rat hearts. Am J Physiol 252 (Endocrinol Metab 15):E124-E130.

    PubMed  CAS  Google Scholar 

  15. Kupriyanov VV, Lakomkin VL, Kapelko VI, Steinschneider AY, Ruuge EK, Saks VA. 1987. Dissociation of adenosine triphosphate levels and contractile function in isovolumic hearts perfused with 2-deoxyglucose. J Mol Cell Cardiol 19:729–740.

    Article  PubMed  CAS  Google Scholar 

  16. Kupriyanov VV, Lakomkin VL, Korchazhkina OV, Steinschneider AY, Kapelko VI, Saks VA. 1991. Control of cardiac energy turnover by cytosolic phosphates: 31P-NMR study. Am J Physiol 261(4, Suppl):45–53.

    PubMed  CAS  Google Scholar 

  17. Ventura-Clapier R, Saks VA, Vassort G, Lauer C, Elizarova GV. 1987. Reversible MM-creatine kinase binding to cardiac myofibrils. AmJ Physiol 253 (Cell Physiol 22):C444–C455.

    CAS  Google Scholar 

  18. Kammermeier H, Schmidt P, Jungling E. 1982. Free energy change of ATP hydrolysis: a causal factor of early hypoxic failure of the myocardium. J Mol Cell Cardiol 14:267–277.

    Article  PubMed  CAS  Google Scholar 

  19. Kapelko VI, Saks VA, Ruuge EK, Kupriyanov VV, Novikova NA, Lakomkin VL, Steinschneider AY, Veksler VI. 1992. The crucial role of creatine kinase for cardiac pump function. In De Deyn PP, Marescau B, Stalon V, Qureshi IA (eds.), Guanidino Compounds in Biology and Medicine. John Libbey: London, pp. 249–251.

    Google Scholar 

  20. Bittl JA, Baischi J, IngwallJS. 1987. Contractile failure and high energy phosphate turnover during hypoxia: 31P-NMR surface coil studies in living rat. Circ Res 60:871–878.

    PubMed  CAS  Google Scholar 

  21. Kapelko VI, Veksler VI, Gorina MS, Golikov MA. 1988. Calcium-dependent changes of the myocardial contractile function at chronic adriamycin treatment. Acta Physiol Polonica 39:166–174.

    CAS  Google Scholar 

  22. Kapelko VI, Saks VA, Novikova NA, Golikov MA, Kupriyanov VV, Popovich MI. 1989. Adaptation of cardiac contractile function to conditions of chronic energy deficiency. J Mol Cell Cardiol 21(Suppl l):79–83.

    Article  PubMed  Google Scholar 

  23. Kapelko VI, Popovich MI, Sharov VG, Kostin SI, Schulzhenko VS, Golikov MA, Saks VA. 1989. The ultrastructural, metabolic and functional alterations of the heart at prolonged adriamycin treatment. J Appl Cardiol 4:79–89.

    Google Scholar 

  24. Kapelko VI, Golikov MA, Novikova NA, Popovich MI. Cardiac contractile changes induced by acute and chronic adriamycin administration. CV World Report 3:60–64.

    Google Scholar 

  25. Popovich MI, Kobets VA, Kostin SI, Kapelko VI. 1992. Myocardial alterations induced by prolonged noradrenaline administration in various doses. Clin Cardiol 15:660–666.

    Article  PubMed  CAS  Google Scholar 

  26. Propovich MI, Kobets VA, Kostin SI, Kapelko VI. 1992. Protective effect of taurine on the myocardial effects of prolonged treatment with norepinephrine in rats. Cardioscience 3:61–66.

    Google Scholar 

  27. Kapelko VI, Veksler VI, Popovich MI. 1990. Cellular mechanisms of alterations in myocardial contractile function in experimental cardiomyopathies. Biomed Sei 1:77–83.

    CAS  Google Scholar 

  28. Veksler VI, Ventura-Clapier R, Lechene P, Vassort G. 1988. Functional state of myofibrils, mitochondria and bound creatine kinase in skinned ventricular fibers of cardiomyopathic hamsters. J Mol Cell Cardiol 20:329–342.

    Article  PubMed  CAS  Google Scholar 

  29. Sievers R, Parmley WW, James T, Wikman-Coffelt J. 1983. Energy levels at systole vs. diastole in normal hamsters vs. myopathic hamster heart. Circ Res 53:759–766.

    PubMed  CAS  Google Scholar 

  30. Singal PK, Deally CMR, Weinberg LE. 1987. Subcellular effects of adriamycin in the heart: a concise review. J Mol Cell Cardiol 19:817–828.

    Article  PubMed  CAS  Google Scholar 

  31. Kapelko VI, Parmley WW, Wu S, Stone RD, Jasmin G, Wikman-Coffelt J. 1988. Increased left ventricular diastolic stiffness in the early phase of hereditary cardiomyopathy. Am Heart J 116:765–770.

    Article  PubMed  CAS  Google Scholar 

  32. Dhalla NS, Lee SL, Shah KR, Elimban V, Suzuki S, Jasmin G. 1994. Behaviour of subcellular organelles during the development of congestive heart failure in cardiomyopathic hamsters (UM-X7.1) In Nagano M, Takeda N, Dhalla NS (eds.), The Cardiomyopathic Heart. Raven Press: New York, 1–14.

    Google Scholar 

  33. Khuchua ZA, Kuznetsov AV, Vasiliyeva EV, Ventura-Clapier R, Clark J, Steinschneider AY, Korchazhkina OV, Lakomkin VL, Branishte T, Ruuge EK, Kapelko VI, Saks VA. 1992. The creatine kinase and cardiomyopathy. Am J Cardiovasc Pathol 4:223–234.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kapelko, V.I., Popovich, M.I., Kupriyanov, V.V. (1996). Cardiac Contractile Failure Caused by Disturbances in Myofibrillar Energy Supply and Pathogenesis of Cardiomyopathies. In: Dhalla, N.S., Singal, P.K., Takeda, N., Beamish, R.E. (eds) Pathophysiology of Heart Failure. Developments in Cardiovascular Medicine, vol 168. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1235-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1235-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8525-0

  • Online ISBN: 978-1-4613-1235-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics