Heart Cells in Culture for Studying Anoxia and “Simulated Ischemia” at the Cellular Level

  • Arié Pinson
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 168)


Cellular damage during anoxic injury is the result of a complex sequence of events. During the initial (reversible) phases of ischemia, the heart is capable of resuming normal mechanical and electrical activity upon restoration of the blood circulation [1,2]. However, following long periods of ischemia, the damage is enhanced upon restoration of arterial blood flow, leading to swelling of the cells and increased necrosis [1–3]. This increase in damage has been termed the oxygen paradox [3].


Heart Cell Oxygen Deprivation Enzyme Release Arachidonic Acid Release High Energy Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jennings RB, Ganote CE. 1974. Structural changes in the myocardium during acute ischemia. Cire Res 35(Suppl III): 156.Google Scholar
  2. 2.
    Whalen DA Jr, Hamilton DG, Ganote GE, Jennings RB. 1974. Effects of a transient period of ischemia on myocardial cells: I. Effects on cell volume regulation. Am J Pathol 74:381–397.PubMedGoogle Scholar
  3. 3.
    Hearse DJ, Humphrey SM, Bullock GR. 1978. The oxygen paradox: two facets of the same problem? J Mol Cell Cardiol 10:641–668.PubMedCrossRefGoogle Scholar
  4. 4.
    Meerson FZ, Kagan VE, Kozlov YP, Belkina LM, Arkipenko YV. 1982. The role of lipid peroxidation in the pathogenesis of ischemic damage and the antioxidant protection of the heart. Basic Res Cardiol 77:465–485.PubMedCrossRefGoogle Scholar
  5. 5.
    Meerson FZ, Kagan VE, Arkipenko YV, Belkina LM, Rozhitskaya II. 1981. Prevention of activation of lipid peroxidation and myocardial antioxidative damage in stress and experimental myocardial infarction. Kardiologia 21:55–60.Google Scholar
  6. 6.
    Halliwell B, Gutteridge JMC, 1985. Free Radicals in Biology and Medicine. Clarenton Press: Oxford.Google Scholar
  7. 7.
    Fridovich I. 1983. Superoxide radicals: an endogenous toxicant. Annu Rev Toxicol 23:239–257.CrossRefGoogle Scholar
  8. 8.
    Walling C. 1975. Fenton’s reagent revisited. Acc Chem Re 8:125–131.CrossRefGoogle Scholar
  9. 9.
    Niehaus WG. 1978. A proposed role of superoxide as a biological nucleophile in the deesterification of phospholipids. Bioorg Chem 7:77–84.CrossRefGoogle Scholar
  10. 10.
    Haliwell B. 1981. Free radicals, oxygen toxicity and ageing. In: Sohal RS (ed.), Age Pigments. Elsevier/North Holland: Amsterdam, p. 1.Google Scholar
  11. 11.
    Barash W, Gubjarnason S, Puri P, Ravens KJ, Bing RJ. 1968. Early changes in energy metabolism in the myocardium following acute coronary occlusion in anesthetized dogs. Circ Res 23:429–438.Google Scholar
  12. 12.
    Katz AM, Hecht HH. 1969. The early “pump” failure of the ischemic heart. Am J Med 47:497–502.PubMedCrossRefGoogle Scholar
  13. 13.
    Opie LH. 1976. Effects of regional ischemia on metabolism of glucose and fatty acids. Relative rates of aerobic and anaerobic energy production during myocardial infraction and comparison with the effects of anoxia. Circ Res 38 (Suppl I):52–74.Google Scholar
  14. 14.
    Kübler W, Spieckermann PG. 1970. Regulation of glycolysis in the ischemic and anoxic myocardium. J Mol Cell Cardiol 1:351–377.PubMedCrossRefGoogle Scholar
  15. 15.
    Rovetto MJ, Lamberton WF, Neely JR. 1975. Mechanisms of glycolytic inhibition in ischemic rat hearts. Circ Res 37:742–751.PubMedGoogle Scholar
  16. 16.
    Neely JR, Feuvray D. 1981. Metabolic products and myocardial ischemia. Am J Pathol 102:282–291.Google Scholar
  17. 17.
    Jennings RB, Hawkins HK, Lowe JE, Hill ML, Klotman S, Riemer KA. 1978. Relation between high energy phosphate and lethal injury in myocardial ischemia in the dog. Am J Pathol 92:187–202.PubMedGoogle Scholar
  18. 18.
    Jennings RB, Riemer KA, Hill ML, Mayer SA. 1981. Total myocardial ischemia in vitro: I. Comparison of high energy phosphate production, utilization and depletion and adenine nucleotide catabolism in total ischemia in vitro vs. severe ischemia in vivo. Circ Res 49:892–899.PubMedGoogle Scholar
  19. 19.
    Jennings RB, Riemer KA, Steenberger C. 1986. Myocardial ischemia revisited. The osmolar load, membrane damage and reperfusion. J Mol Cell Cardiol 18:769–780.PubMedCrossRefGoogle Scholar
  20. 20.
    Kaltenbach JP, and Jennings RB. 1960. Metabolism of ischemic cardiac muscle. Circ Res 8:207–213.PubMedGoogle Scholar
  21. 21.
    Jennings RB, Ganote GE, Riemer KA. 1975. Ischaemic tissue injury. Am J Pathol 81:179–198.PubMedGoogle Scholar
  22. 22.
    Nayler WG, Poole-Wilson PA, Willimas A. 1979. Hypoxia and calcium. J Mol Cell Cardiol 11:683–708.PubMedCrossRefGoogle Scholar
  23. 23.
    Weglicki WB, Owens K, Urschel CW, Serur JR, Sonnenblick EJ. 1972. Hydrolysis of myocardial lipids during acidosis and ischemia. Recent Adv Stud Card Struct Metab 3:781–793.Google Scholar
  24. 24.
    Wildenthal K. 1978. Lysosomal alterations in the ischemic myocardium: result or cause of myocellular damage? J Mol Cell Cardiol 10:595–603.PubMedCrossRefGoogle Scholar
  25. 25.
    Auclair MC, Adolphe M, Moreno G, Salet C. 1976. Comparison of the effects of potassium cyanide and hypoxia on ultrastructure and electrical activity of cultured rat myoblasts. Toxicol Appl Pharmacol 37:387–399.PubMedCrossRefGoogle Scholar
  26. 26.
    Barry WH, Pober J, Marsh JD, Frankel SR, Smith TW. 1980. Effects of graded hypoxia on contraction of cultured chick embryo ventricular cells. Am J Physiol 239:H651-H657.PubMedGoogle Scholar
  27. 27.
    Bricknell OL, Opie LH. 1978. Effects of substrates on tissue metabolic changes in isolated rat heart during underperfusion and on the release of lactic dehydrogenase and arrhythmias during reperfusion. Circ Res 113:102–115.Google Scholar
  28. 28.
    Opie LH, Bricknell OL. 1979. Role of glycolytic flux in the effect of glucose on decreasing fatty-acid-induced release of lactic dehydrogenase from isolated coronary ligated rat heart. Cardiovasc Res 13:693–702.PubMedCrossRefGoogle Scholar
  29. 29.
    Higgins TJC, Allsopp D, Bailey PJ, D’Souza EDA. 1981. The relationship between fatty acid metabolism and membrane integrity in neonatal myocytes. J Mol Cell Cardiol 13: 599–615.PubMedCrossRefGoogle Scholar
  30. 30.
    Girardier L. 1971. Dynamic energy partition in cultured heart cells. Cardiology 56:88–92.PubMedCrossRefGoogle Scholar
  31. 31.
    McDonald TFE, Hunter EG, MacLeod DP. 1971. Adenosine-tri-phosphate partition in cardiac muscle with respect to transmembrane electrical activity. Pfluger’s Arch 322:95–108.CrossRefGoogle Scholar
  32. 32.
    McLeod DP, Daniel EE. 1965. Influence of glucose on the membrane action potential of anoxic papillary muscle. J Gen Physiol 48:887–899.CrossRefGoogle Scholar
  33. 33.
    Doorey AJ, Barry WH. 1983. The effects of inhibition of oxidative phosphorylation and glycolysis on contractility and high-energy phosphate content in cultured chick heart. Circ Res 53:192–201.PubMedGoogle Scholar
  34. 34.
    Neely JR, Liebermeister H, Battersby EJ, Morgan EJ. 1967. Effect of pressure development on oxygen consumption of the isolated rat heart. Am J Physiol 212:804–814.PubMedGoogle Scholar
  35. 35.
    Gazitt Y, Ohad I, Loyter A. 1975. Changes in the phospholipid susceptibility towards phospholipases induced by ATP depletion in avian and amphibian erythrocytes. Biochim Biophys Acta 382:65–72.PubMedCrossRefGoogle Scholar
  36. 36.
    Gazitt Y, Ohad I, Loyter A. 1976. Phosphorylation and dephosphorylation of membrane proteins as a possible mechanism for structural rearrangement of membrane components. Biochim Biophys Acta 436:1–14.PubMedCrossRefGoogle Scholar
  37. 37.
    Higgins TJC, Bailey PJ, Allsopp D. 1981. The influence of ATP depletion on the action of phospholipase C on cardiac myocyte membrane phospholipids. J Mol Cell Cardiol 13:1027–1030.PubMedCrossRefGoogle Scholar
  38. 38.
    Higgins TJC, Bailey PJ, Allsopp D. 1982. Interrelationship between cellular metabolic status and susceptibility of heart cells to attack by phospholipase. J Mol Cell Cardiol 14:645–654.PubMedCrossRefGoogle Scholar
  39. 39.
    Van der Laarse A, Hollaar L, Van der Valk JM, Witteveen SAGJ. 1978. Enzyme release from and enzyme depletion in rat heart cell cultures during anoxia. J Mol Med 3:123–131.Google Scholar
  40. 40.
    Altona JC, Van der Laarse A. 1982. Anoxia-induced changes in composition and permeability of sarcolemmal membranes in rat heart cultures. Cardiovasc Res 16:138–143.PubMedCrossRefGoogle Scholar
  41. 41.
    Smith WL. 1989. The eicosanoids and their biochemical mechanism of aciton. Biochem J 259:315–324.PubMedGoogle Scholar
  42. 42.
    Wightman PD, Dallob A. 1990. Regulation of phosphatidylinositol breakdown and leucotriene synthesis by endogenous prostaglandins in resident mouse peritoneal macrophages. J Biol Chem 265:9176–9180.PubMedGoogle Scholar
  43. 43.
    Smith WL. 1989. In Willis AL (ed.), Handbook of Eicosanoids, Prostaglandins and Related Lipids, Vol. 1a. CRC Press: Boca Raton, pp. 175–185.Google Scholar
  44. 44.
    Revtyak GE, Buja LM, Chien KR, Campbell WB. 1990. Reduced arachidonate metabolism in ATP-depleted myocardial cells occurs early in cell injury. Am J Physiol 259:H582-H591.PubMedGoogle Scholar
  45. 45.
    Freyss-Beguin M, Millanvoye-Van Brussel E, Simon J, Duval D. 1990. Effect of isoproterenol on lipid metabolism and prostaglandin production in cultures of new-born rat heart cells under normoxic and hypoxic conditions. Prostaglandins Leukot Essent Fatty Acids 41:235–242.PubMedCrossRefGoogle Scholar
  46. 46.
    Pinson A, Zilberman Y, Tirosh R, Trembovler V, Shohami E. 1994. High oligomycin concentrations augment 6-keto-PGF production in ventricular cardiomyocytes. Biochim Biophys Acta 1211:283–288.PubMedGoogle Scholar
  47. 47.
    Marshall PJ, Kulmacx RJ, Lands WEM. 1987. Constraints on prostaglandin biosynthesis in tissues. J Biol Chem 262:3510–3517.PubMedGoogle Scholar
  48. 48.
    Pinson A, Tirosh R, Zilberman Y, Shohami E. Submitted. Oligomycin activates phospholipase C in cultured ventricular myocytes.Google Scholar
  49. 49.
    Fantini E, Athias P, Courtois M, Khatami S, Grynberg A, Chevalier A. 1990. Oxygen and substrate deprivation on isolated rat cardiac myocytes—temporal relationship between electromechanical and biochemical consequences. Can J Physiol Pharmacol 68:1148–1156.PubMedCrossRefGoogle Scholar
  50. 50.
    Hollenberg M. 1971. Effect of oxygen on growth of cultured myocardial cells. Circ Res 28:148–157.PubMedGoogle Scholar
  51. 51.
    Karsten U, Kossler V, Janiszewski E, Wollenberger A. 1973. Influence of variations in pericellular oxygen tension on individual cell growth, muscle-characteristic proteins, and lactate dehydrogenase isoenzyme patterns in cultures of beating rat heart cells. In vitro 9:139–146.Google Scholar
  52. 52.
    Acosta D, Puckett M. 1977. Ischemic myocardial injury in cultured heart cells: preliminary observations on morphology and beating activity. In vitro 13:818–823.Google Scholar
  53. 53.
    Acosta D, Cheng-Pei L. 1972. Injury to primary cultures of rat heart endothelial cells by hypoxia and glucose deprivation. In vitro 15:929–934.Google Scholar
  54. 54.
    Acosta Puckett M, McMillin R. 1978. Ischemic myocardial injury in cultured heart cells: leakage of cytoplasmic enzymes from injured cells. In vitro 14:728–732.Google Scholar
  55. 55.
    Acosta D, Puckett M, Cheng-Pei L. 1980. Reduction of cell injury in hypoxic culture of rat myocardial cells by methylprednisolone. In Vitro 16:93–96.Google Scholar
  56. 56.
    Van der Laarse A, Davids HA, Hollaar L, Hermens WT. 1981. The enhanced release of mitochondrial aspartate aminotransferase (mAST) from anoxic rat heart cell cultures during reoxygenation. Comparison to plasma mast levels in patients after acute myocardial infarction and after cardiac surgery. Cardiovasc Res 15:11–20.PubMedCrossRefGoogle Scholar
  57. 57.
    Altona JC, Van der Laarse A, Bloys van Treslong CHF. 1984. Release of compartment specific enzymes from neonatal rat heart cell cultures during anoxia and reoxygenation. Cardiovasc Res 18:99–106.PubMedCrossRefGoogle Scholar
  58. 58.
    Frelin C, Pinson A, Athias P, Surville JM, Padieu P. 1979. Glucose and palmitate metabolism by beating heart cells in culture. Pathol Biol 27:45–50.PubMedGoogle Scholar
  59. 59.
    Vemuri R, Heller M, Pinson A. 1985. Studies of oxygen and volume restriction in cultured heart cells. II. The glucose effect. Basic Res Cardiol 80 (Suppl 2):165–169.PubMedCrossRefGoogle Scholar
  60. 60.
    Allsopp D, Bailey PJ, Higgins TJC. 1980. The effects of incubation conditions on enzyme release from anoxic rat heart cell cultures. Biochem Soc Trans 8:582.PubMedGoogle Scholar
  61. 61.
    Higgins TJC, Allsopp DN, Bailey PJ. 1980. The effect of extracellular calcium concentration and Ca-antagonist drugs on enzyme release from anoxic rat heart cultures. J Mol Cell Cardiol 12:909–927.PubMedCrossRefGoogle Scholar
  62. 62.
    Higgins TJC, Bailey PJ, Allsopp D, Imhof DA. 1981. Cultured neonate rat myocytes as a model for the study of myocardial ischaemic necrosis. J Pharm Pharmacol 33:644–649.PubMedCrossRefGoogle Scholar
  63. 63.
    Bailey PJ, Higgins TJC. 1983. Metabolism of palmitate by anoxic and reoxygenated heart cell cultures. J Cell Sci 60:209–219.PubMedGoogle Scholar
  64. 64.
    Ouellette AJ, Watson RK, Billmire K, Dygert MK, Ingwall JS. 1983. Protein synthesis in cultured fetal mouse heart: effect of deprivation of oxygen and oxidizable substrate. Biochemistry 22:1201–1207.PubMedCrossRefGoogle Scholar
  65. 65.
    De Luca MA, Ingwall JS, Bittl JA. 1974. Biochemical responses of myocardial cells in culture to oxygen and glucose deprivation. Biochem Biophys Res Commun 59:749–756.CrossRefGoogle Scholar
  66. 66.
    Van der Laarse A, Graf-Minar ML, Witteveen SAGJ. 1979. Release of hypoxanthine from and enzyme depletion in rat heart cell cultures deprived of oxygen and metabolic substrates. Clin Chim Acta 91:47–52.PubMedCrossRefGoogle Scholar
  67. 67.
    Altona JC, Van der Laarse A. 1982. Anoxia induced changes in composition and permeability of sarcolemmal membrane in rat heart cell cultures. Cardiovasc Res 16:138–143.PubMedCrossRefGoogle Scholar
  68. 68.
    Altona J, Zoet ACM, Van der Laarse A. 1982. Anoxia induced changes in rat heart cell cultures. In Caldarera CM, Harris P (eds), Advances in Studies on Heart Metabolism. CLUEB: Bologna, Italy, p. 69.Google Scholar
  69. 69.
    Demel RA, de Kruyff B. 1976. The function of sterols in membranes. Biochim Biophys Acta 457:109–132.PubMedGoogle Scholar
  70. 70.
    Vemuri R, Yagev S, Heller M, Pinson A. 1985. Studies on oxygen restriction in cultured cardiac cells. I. A model for ischemia and anoxia with a new approach. In Vitro 21:521–525.Google Scholar
  71. 71.
    Vemuri R. 1986. Biochemical alterations in cultured rat heart cells and their sarcolemma during ischemia, hypoxia and anoxia. Ph.D. thesis, The Hebrew University of Jerusalem.Google Scholar
  72. 72.
    Ne’eman Z, Pinson A. 1990. Oxygen and extracellular fluid restriction in cultured heart cells: electron microscopy studies. Cardiovasc Res 24:555–559.PubMedCrossRefGoogle Scholar
  73. 73.
    Jennings RB, Hawkins HK. 1980. Ultrastructual changes of acute myocardial ischemia. In Wildenthal K (ed), Degradative Processes in Heart and Skeletal Muscle. Elsevier/North Holland Biomedical Press: Amsterdam, p. 295.Google Scholar
  74. 74.
    Neely JR, Morgan HE. 1974. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 36:414–459.CrossRefGoogle Scholar
  75. 75.
    Vemuri R, de Jong JW, Hegge JAJ, Heller M, Pinson A. 1989. Studies on oxygen and extracellular fluid restriction in cultured heart cells: high energy phosphate metabolsim. Cardiovasc Res 23:254–261.PubMedCrossRefGoogle Scholar
  76. 76.
    Bretscher MS. 1972. Phosphatidyl-ethanolamine differential labeling in intact cells and cell ghosts of human erythrocytes by a membrane impermeable reagent. J Mol Biol 71:523–528.PubMedCrossRefGoogle Scholar
  77. 77.
    Post JA, Langer GA, Verklej AJ, Op den Kamp JAF. 1988. Phospholipid asymmetry in cardiac sarcolemma. Analysis of intact cells and “gas-dissected” membranes. Biochim Biophys Acta 943:256–266.PubMedCrossRefGoogle Scholar
  78. 78.
    Beneson A, Mersel M, Pinson A, Heller M. 1979. Radioiodination of pure and membrane bound phospholipids catalyzed by lactoperoxidase. Anal Biochem 101:507–512.CrossRefGoogle Scholar
  79. 79.
    Mersel M, Benenson A, Pinson A, Heller M. 1980. Phospholipid asymmetry in mixed liposomes detected by enzymatic radioiodination. FEBS Lett 110:69–72.PubMedCrossRefGoogle Scholar
  80. 80.
    Vemuri R, Mersel M, Heller M, Pinson A. 1988. Studies on oxygen and volume restriction in cultured cardiac cells: possible rearrangements of sarcolemmal lipid moieties during anoxia and ischemia-like states. Mol Cell Biochem 79:39–46.PubMedCrossRefGoogle Scholar
  81. 81.
    Musters RJP, Post JA, Verklej AJ. 1991. The isolated neonatal rat cardiomyocyte use in an in vitro model of “ischemia”. I. A morphological study. Biochim Biophys Acat 1091:270–277.CrossRefGoogle Scholar
  82. 82.
    Musters RJP, Otten E, Biegelmann E, Bijvelt J, Keijzer JJH, Post JH, Op den Kamp JAF, Verklej AJ. 1993. Loss of assymetric distribution of sarcolemmal phosphatidyl-ethanolamine during simulated ischemia in the isolated neonatal rat heart cardiomyocyte. Circ Res 73: 514–523.PubMedGoogle Scholar
  83. 83.
    Pinson A, Tirosh R, Trembovler V, Shohami E. 1995. Oxygen deprivation and reoxygenation augment prostacyclin synthesis in cultured ventricular cardiomyocytes. Prost Leuk Essn Fatty acids (in press).Google Scholar
  84. 84.
    Oudot F, Grynberg A, Sergiel JP. 1995. Eicosanoid synthesis in cardiomyocytes: influence of hypoxia reoxygenation and polyunsaturated fatty acids. Am J Physiol 37:H308-H315.Google Scholar
  85. 85.
    Nahas N, Pinson A. 1992. Anoxic injury accelerates phosphatidylcholine degradation in cultured cardiac myocytes by phospholipase C. FEBS Lett 298:301–305.CrossRefGoogle Scholar
  86. 86.
    Piper HM, Spah R, Hutter JF, Spieckerman PG. 1985. The calcium and the oxygen paradox—nonexistent at the cellular level. Basic Res Cardiol 80 (Suppl 2):159–163.PubMedGoogle Scholar
  87. 87.
    Ginsburg I, Misgav R, Pinson A, Varani J, Ward PA, Kohen R. 1992. Synergism among oxidants, proteinases, phospholipase, microbial hemolysins, cationic proteins and cytokines: a possible major cause of cell and tissue destruction in inflammation (a working hypothesis). Inflammation 16:519–538.PubMedCrossRefGoogle Scholar
  88. 88.
    Tuijl MJM, van Bergenen Henegouwen PMP, van Wijk R, Verkleij AJ. 1991. The isolated neonatal rat-cardiomyocyte used in an in vitro model for “ischemia.” II. Induction of the 68kDa heat shock protein. Biochim Biophys Acta 1091:278.PubMedCrossRefGoogle Scholar
  89. 89.
    Banai S, Sweiki D, Pinson A, Chandra M, Lazarovici G, Keshet E. 1994. Upregulation of vascular endothelial growth expression induced by myocardial ischemia: implication for coronary angiogenesis. Cardiovasc Res 28:1176–1179.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Arié Pinson

There are no affiliations available

Personalised recommendations