Skip to main content

Diabetic State Reduces Ischemic K+ Loss and H+ Efflux in Isolated Rat Hearts

  • Chapter
Book cover Pathophysiology of Heart Failure

Abstract

Paradoxical and even beneficial effects of diabetes mellitus on the circulation system have been noted by several authors [1–3]. We found that diabetic hearts are more tolerant to high-frequency pacing [4] and that isolated, perfused diabetic rat hearts are less susceptible to ischemia—reperfusion injury in the substrate-free condition [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refereces

  1. Tani M, Neely JR. 1988. Hearts from diabetic rats are more resistant to in vivo ischemia: possible role of altered Ca2+ metabolism. Circ Res 62:931–940.

    PubMed  CAS  Google Scholar 

  2. Kusama Y, Hearse DJ, Avkiran M. 1992. Diabetes and susceptibility to reperfusion-induced ventricular arrhythmias. J Mol Cell Cardiol 24:411–421.

    Article  PubMed  CAS  Google Scholar 

  3. Khandoudi N, Bernard M, Cozzone P, Feuvrey D. 1990. Intracellular pH and role of Na+/H+ exchange during ischemia and reperfusion of normal and diabetic rat hearts. Cardiovasc Res 24:873–878.

    Article  PubMed  CAS  Google Scholar 

  4. Mochizuki S, Ozeki T, Tanaka F, Nagano M. 1991. Regulation of substrate utilization and ventricular function in diabetic hearts. In Nagano M, Dhalla NS (eds.), The Diabetic Heart. Raven Press: New York, pp. 351–364.

    Google Scholar 

  5. Mochizuki S, Tanaka F. Ejima M, Onodera T, Taniguchi M, Nagano M. 1994. Attenuation of susceptibility to ischemia/reperfusion in isolated, substrate free perfused hearts from diabetic rats. In Nagano M, Takeda N, Dhalla NS (eds.), The Adapted Heart. Raven Press: New York, pp. 423–429.

    Google Scholar 

  6. Neely JR, Liebermeister H, Battersby EJ, Morgan HE. 1967. Effect of pressure development of oxygen consumption by isolated rat heart. Am J Physiol 212:804–814.

    PubMed  CAS  Google Scholar 

  7. Neely JR, Rovetto MJ, Whitmer JT, Morgan HE. 1973. Effect of ischemia on function and metabolism of isolated working rat heart. Am J Physiol 225:651–658.

    PubMed  CAS  Google Scholar 

  8. Harris AS, Bisteni A, Russell RA, Brigham JC, Firestone JE. 1954. Excitatory factors in ventricular tachycardia resulting from myocardial ischemia. Potassium a major excitant. Science 119:200–203.

    Article  PubMed  CAS  Google Scholar 

  9. Hill JL, Gettes LS. 1980. Effect of acute coronary occlusion on local myocardial extracellular K+ activity in swine. Circulation 61:768–778.

    PubMed  CAS  Google Scholar 

  10. Pierce GN, Dhalla NS. 1983. Sarcolemmal Na+/K+-ATPase activity in diabetic rat heart. Am J Physiol 245:C241–C247.

    PubMed  CAS  Google Scholar 

  11. Heyliger CE, Prakash A, McNeil JH. 1987. Alterations in cardiac sarcolemmal Ca2+ pump activity during diabetes mellitus. Am J Physiol 252:H540–H544.

    PubMed  CAS  Google Scholar 

  12. Case RB. 1971/72. Ion alterations during myocardial ischemia. Cardiology 56:245–262.

    Article  PubMed  CAS  Google Scholar 

  13. Weiss JN, Shieh R. 1994. Potassium loss during myocardial ischaemia and hypoxia: does lactate efflux play a role? Cardiovasc Res 28:1125–1132.

    Article  PubMed  CAS  Google Scholar 

  14. Kantor PF, Coetzee WA, Carmeliet EE, Dennis SC, Opie LH. 1990. Reduction of ischemic K+ loss and arrhythmias in rat hearrts. Effect of glibenclamide, a sulfonylurea. Circ Res 66:478–485.

    PubMed  CAS  Google Scholar 

  15. Noma A. 1983. ATP-regulated K+ channels in cardiac muscle. Nature 305:147–148.

    Article  PubMed  CAS  Google Scholar 

  16. Grover GJ. 1994. Protective effects of ATP sensitive potassium channel openers in models of myocardial ischemia. Cardiovasc Res 28:778–782.

    Article  PubMed  CAS  Google Scholar 

  17. Gross GJ, Auchampach JA. 1992. Role of ATP-dependent potassium channels in myocardial ischaemia. Cardiovasc Res 26:1011–1016.

    Article  PubMed  CAS  Google Scholar 

  18. Antzelevitch C, DiDiego JM. 1992. Role of K+ channel activators in cardiac electrophy-siology and arrhythmias. Circulation 85:1627–1629.

    PubMed  CAS  Google Scholar 

  19. Cole WC, McPherson CD, Sontag D. 1991. ATP-regulated K+ channels protect the myocardium against ischemia/reperfusion damage. Circ Res 69:571–581.

    PubMed  CAS  Google Scholar 

  20. Sargent CA, Smith MA, Dzwonczyk S, Sleph PG, Grover GJ. 1991. Effect of potassium channel blockade on the anti-ischemic actions of mechanistically diverse agents. J Pharmacol Exp Ther 259:97–103.

    PubMed  CAS  Google Scholar 

  21. Fosset M, De Weille JR, Green RD, Schmid-Antomarchi H, Lazdunski M. 1988. Antidiabetic sulfonylureas control action potential properties in heart cells via high affinity receptors that are linked to ATP-dependent K+ channels. J Biol Chem 263:7933–7936.

    PubMed  CAS  Google Scholar 

  22. Bekheit SS, Restive M, Boutjdir M, Henkin R, Gooyanden K, Assadi M, Khatib S, Gough WB, El-Sherif N. 1990. Effects of glyburide on ischemia-induced changes in extracellular potassium and local myocardial activation: a potential new approach to the management of ischemia-induced malignant ventricular arrhythmias. Am Heart J 119:1025–1033.

    Article  PubMed  CAS  Google Scholar 

  23. Wollenben CD, Sanguinetti MC, Siegl PKS. 1989. Influence of ATP-sensitive potassium channel modulators in ischemia-induced fibrillation in isolated rat hearts. J Mol Cell Cardiol 21:783–788.

    Article  Google Scholar 

  24. Cacciapouti F, Speizia R, Bianchi U, Lama D, D’Avino M, Varricchio M. 1991. Effectiveness of glibenclamide on myocardial ischemic ventricular arrhythmias in non-insulin-dependent diabetes mellitus. Am J Cardiol 67:843–847.

    Article  Google Scholar 

  25. Davies NW, Standem NB, Stanfield PR. 1992. The effect of intracellular pH on ATP-dependent potassium channels of frog skeletal muscle. J Physiol 445:549–568.

    PubMed  CAS  Google Scholar 

  26. Davies NW. 1990. Modulation of ATP-sensitive K+ channels in skeletal muscle by intracellular protons. Nature 343:375–377.

    Article  PubMed  CAS  Google Scholar 

  27. Cuevas J, Bassett AL, Cameron JS, Furukawa T, Myerburg RT, Kimura S. 1991. Effect of H+ on ATP-regulated K+ channel in feline ventricular myocytes. Am J Physiol 261:H755-H761.

    PubMed  CAS  Google Scholar 

  28. Fan Z, Makielski JC. 1993. Intracellular H+ and Ca2+ modulation of tripsin-modified ATP-sensitive K+ channels in rabbit.ventricular myocytes. Circ Res 72:715–722.

    PubMed  CAS  Google Scholar 

  29. Lederer WJ, Nichols CG. 1989. Nucleotide modulation of the activity of rat heart ATP-sensitive K+ channels in isolated membrane patches. J Physiol 419:193–211.

    PubMed  CAS  Google Scholar 

  30. Anderson SE, Murphy E, Steenbergen C, London RE, Cala PM. 1990. Na-H exchange in myocardium: effects of hypoxia and acidification on Na and Ca. Am J Physiol 259:C940–C948.

    PubMed  CAS  Google Scholar 

  31. Murphy E, Perlman M, London RE, Steenbergen C. 1991. Amiloride delays the ischemia-induced rise in cytoslic free calcium. Circ Res 68:1250–1258.

    PubMed  CAS  Google Scholar 

  32. Mochizuki S, Seki S, Ejima M, Onodera T, Taniguchi M, Ishikawa S. 1993. Na+/H+ exchanger and reperfusion-induced ventricular arrhythmias in isolated perfused heart: possible role of amiloride. Mol Cell Biochem 119:151–157.

    Article  PubMed  CAS  Google Scholar 

  33. Pierce GN, Philipson KD. 1985. Na+-H+ exchange in cardiac sarcolemmal vesicles. Biochim Biophys Acta 818:109–116.

    Article  PubMed  CAS  Google Scholar 

  34. Luzdunski M, Freiin C, Vigne P. 1985. The sodium/hydrogen exchange in cardiac cells: its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J Mol Cell Cardiol 17:1029–1042.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Mochizuki, S. et al. (1996). Diabetic State Reduces Ischemic K+ Loss and H+ Efflux in Isolated Rat Hearts. In: Dhalla, N.S., Singal, P.K., Takeda, N., Beamish, R.E. (eds) Pathophysiology of Heart Failure. Developments in Cardiovascular Medicine, vol 168. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1235-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1235-2_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8525-0

  • Online ISBN: 978-1-4613-1235-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics