Skip to main content

Collagenous Proteins in Scar Tissue Subsequent to Myocardial Infarction

  • Chapter
Pathophysiology of Heart Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 168))

  • 165 Accesses

Abstract

A significant body of evidence from observations in clinical and experimental models has accumulated to demonstrate that a progressive loss of intrinsic contractility occurs in surviving myocardium after large transmural myocardial infarction, and the degree of cardiac pump dysfunction in viable tissue has been correlated to the size of the initial infarct [1–4]; however, no common biochemical defect has been identified to explain the loss of cardiac function [5]. Previous work indicates that structural and biochemical remodeling of surviving cardiac tissue is characterized by concentric and eccentric hypertrophy of myocytes and altered biochemical characteristics of myosin protein [4,6–9]. Furthermore, defective sarcolemmal and sarcoplasmic reticular membrane functions have been described both in the clinical setting and in experimental models of heart failure, including the rat model of congestive heart failure following myocardial infarction [5]. Indeed, many previous investigative efforts that have addressed the pathology of myocardial infarction have been directed at mechanisms to explain the loss of contractility in surviving myocardium of infarcted hearts. The extracellular matrix has been suggested to play a role in the pathogenesis of heart failure, and recent work from this laboratory has revealed that the collagen, a major component of the matrix, is altered in remaining viable myocardium [10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pagani ED, Alousi AA, Grant AM, Older TM, Dzurban SW, Allen PD. 1988. Changes in myofibrillar content and Mg-ATPase activity in ventricular tissues from patients with heart failure caused by coronary artery disease, cardiomyopathy, or mitral valve insufficiency. Circ Res 63:380–385.

    PubMed  CAS  Google Scholar 

  2. Zimmer HG, Gerdes M, Lortet S, Mall G. 1990. Changes in heart function and cardiac cell size in rats with chronic myocardial infarction. J Mol Cell Cardiol 22:1231–1243.

    Article  PubMed  CAS  Google Scholar 

  3. Francis GS, Cohn JN. 1990. Heart failure: mechanism of cardiac and vascular dysfunction and the rationale for pharmacologic intervention. FASEB J 4:3068–3075.

    PubMed  CAS  Google Scholar 

  4. Mill JG, Stefanon I, Leite CM, Vassalo DV. 1990. Changes in performance of the surviving myocardium after left ventricular infarction in rats with chronic myocardial infarction. Cardiovasc Res 24:748–753.

    Article  PubMed  CAS  Google Scholar 

  5. Dhalla NS, Dixon IMC, Beamish RE. 1991. Biochemical basis of heart function and contractile failure. J Appl Cardiol 6:7–30.

    Google Scholar 

  6. Sato S, Ashraf M, Fusiwara H, Schwartz A. 1983. Connective tissue changes in early ischemia of porcine myocardium: an ultrastructural study. J Mol Cell Cardiol 15:261–275.

    Article  PubMed  CAS  Google Scholar 

  7. Anversa P, Beghi C, Kikkowa Y, Olivetti C. 1986. Myocardial infarction in rats. Infarct size, myocyte hypertrophy, and capillary growth. Circ Res 58:26–37.

    PubMed  CAS  Google Scholar 

  8. Olivetti G, Ricci R, Langasta C, Maningo E, Sonnenblick EH, Anversa P. 1990. Cellular basis of wall remodeling in long-term pressure overload-induced right ventricular hypertrophy in rats. Circ Res 63:380–385.

    Google Scholar 

  9. Pelouch V, Ostadal B, First T. 1976. Structural and enzymatic properties of cardiac myosin in ischemic and non-ischemic regions of the rat myocardium. Pflugers Arch 364:1–6.

    Article  PubMed  CAS  Google Scholar 

  10. Pelouch V, Dixon IMC, Sethi R, Dhalla NS. 1993. Alteration of collagenous protein profile in congestive heart failure secondary to myocardial infarction. Mol Cell Biochem 129: 121–131.

    Article  PubMed  CAS  Google Scholar 

  11. Weber KT, Brilla CG. 1992. Factors associated with reactive and reparative fibrosis of the myocardium. Basic Res Cardiol(Suppl I) 87:291–301.

    PubMed  Google Scholar 

  12. Iimoto DS, Corell JW, Harper E. 1988. Increase in cross-linking of type I and type III collagens associated with volume-overload hypertrophy. Circ Res 63:399–408.

    PubMed  CAS  Google Scholar 

  13. Pelouch V, Ostadal B, Prochazka J, Urbanova D, Widmirsky J, 1985. Effect of high altitude hypoxia on the protein composition of the right ventricular myocardium. Prog Respir Res 20:41–48.

    Google Scholar 

  14. Mukherjee D, Sen S. 1990. Collagen phenotypes during development and regression of myocardial hypertrophy in spontaneously hypertensive rats. Circ Res 67:1474–1480.

    PubMed  CAS  Google Scholar 

  15. Johns THP, Olson BJ. 1954. Experimental myocardial infarction: I. A method of coronary occlusion in small animals. Ann Surg 140:675–680.

    Article  PubMed  CAS  Google Scholar 

  16. Selye H, Bajusz E, Grasso S, Mendell P. 1960. Simple techniques for the surgical occlusion of coronary vessels in the rat. Angiology 11:398–407.

    Article  PubMed  CAS  Google Scholar 

  17. Dixon IMC, Lee SL, Dhalla NS. 1990. Nitrendipine binding in congestive heart failure due to myocardial infarction. Circ Res 66:782–788.

    PubMed  CAS  Google Scholar 

  18. Huzar G. 1980. Monitoring of collagen and collagen fragments in chromatography of protein mixture. Anal Biochem 105:424–429.

    Article  Google Scholar 

  19. Chiarello M, Ambrosio G, Capelli-Bigazzi M, Perone-Filardi P, Brigante F, Sifola C. 1986. Biochemical method for quantification of myocardial scarring after experimental coronary artery occlusion. J Mol Cell Cardiol 18:283–290.

    Article  Google Scholar 

  20. Pelouch V, Milerova M, Ostadal B, Prochazka J. In press. Ontogenetic development of protein composition of the right and left ventricular myocardium. In Marpugo and Jezek (eds.), Cardiac Muscle and Pulmonary Hypertension. Springer-Verlag: Berlin.

    Google Scholar 

  21. Lowry OH, Rosenbrough HJ, Farr AL, Randall RJ. 1951. Protein measurement with Folin reagent. J Biol Chem 193:265–275.

    PubMed  CAS  Google Scholar 

  22. Geenen DL, Malhotra A, Liang D, Scheuer J. 1991. Ventricular function and contractile proteins in the infarcted overloaded rat heart. Cardiovasc Res 25:330–336.

    Article  PubMed  CAS  Google Scholar 

  23. Michel JB, Lattion AL, Salzmann JL, Icerol ML, Philippe M, Cammilers JP, Corvol P. 1988. Hormonal and cardiac effects of converting enzyme inhibition in rat myocardial infarction. Circ Res 62:641–650.

    PubMed  CAS  Google Scholar 

  24. Heggweit HA. 1971. Morphological alterations in the ischemic heart. Cardiology 56: 284–290.

    Article  Google Scholar 

  25. Schug AL, Shrago E, Bittar N, Folts J, Koke JR. 1975. Acyl-CoA inhibition of adenine nucleotide translocation in ischemic myocardium. Am J Physiol 288:689–692.

    Google Scholar 

  26. Von Krimpen C, Schoemaker RG, Cleutjens JPM. 1991. Angiotensin I converting enzyme inhibitors and cardiac remodeling. Basic Res Cardiol 86(Suppl I): 149–155.

    PubMed  Google Scholar 

  27. Jugdutt BI, Amy RWM. 1986. Healing after myocardial infarction in the dog: changes in infarct hydroxyproline and topography. J Am Coll Cardiol 7:91–102.

    Article  PubMed  CAS  Google Scholar 

  28. Fishbein MC, Maclean D, Maroko PR. 1978. Experimental myocardial infarction in the rat: qualitative and quantitative changes during pathologic evolution. Am J Pathol 90:57–70.

    PubMed  CAS  Google Scholar 

  29. Weber KT, Brilla CG. 1992. Factors associated with reactive and reparative fibrosis of the myocardium. Basic Res Cardiol 87(Suppl 1):291—301.

    Google Scholar 

  30. McCormick RJ, Musch TI, Bergman BC, Thomas DP. 1994. Regional differences in LV collagen accumulation and mature cross-linking after myocardial infarction in rats. Am J Physiol 266:H354-H359.

    PubMed  CAS  Google Scholar 

  31. Harder B, Yeh CK, Oldewurtel HA, Lyons MM, Regan T. 1981. Influence of diabetes on the myocardium and coronary arteries of rhesus monkey fed an atherogenic diet. Circ Res 49:1278–1288.

    Google Scholar 

  32. Dawson R, Milne G, Williams RB. 1982. Changes in the collagen of rat heart in copper-deficiency-induced cardiac hypertrophy. Cardiovasc Res 16:559–565.

    Article  PubMed  CAS  Google Scholar 

  33. Morgan HE, Baker KM. 1991. Cardiac hypertrophy: mechanical, neural, and endocrine dependence. Circulation 83:13–25.

    PubMed  CAS  Google Scholar 

  34. Villareal FJ, Kim NN, Ungals GD, Printz MP, Dillman WH. 1993. Identification of functional angiotensin II receptors on rat cardiac fibroblasts. Circulation 88:2849–2861.

    Google Scholar 

  35. Yamagishi H, Kim S, Nishikimi T, Takeuchi K, Takeda T. 1993. Contribution of cardiac renin-angiotensin system to ventricular remodelling in myocardial-infarcted rats. J Mol Cell Cardiol 25:1369–1380.

    Article  PubMed  CAS  Google Scholar 

  36. Brilla CG, Zhou G, Matsubara L, Weber KT. 1994. Collagen metabolism in adult rat cardiac fibroblasts: response to angiotensin and aldosterone. J Mol Cell Cardiol 26:809–820.

    Article  PubMed  CAS  Google Scholar 

  37. Linz W, Scholkens BA, Ganten D. 1989. Converting enzyme inhibition specifically prevents the development and induces the regression of cardiac hypertrophy in rats. Clin Exp Hypertens 11:1325–1350.

    Article  CAS  Google Scholar 

  38. Geenen DL, Malhotra A, Liang D, Yarlagada A, Scheuer J. 1992. Angiotensin II increases protein synthesis in rat heart. J Mol Cell Cardiol 24(SIII): S29 (abstract).

    Article  Google Scholar 

  39. Guarda E, Katwa LC, Myers PR, Tyagi SC, Weber KT. 1993. Effect of endothelins on collagen turnover in cardiac fibroblasts. Cardiovasc Res 27:2130–2134.

    Article  PubMed  CAS  Google Scholar 

  40. Sadoshima J, Izumo S. 1993. Molecular characterization of Angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts: critical role of the AT1 receptor subtype. Circ Res 73:413–423.

    PubMed  CAS  Google Scholar 

  41. Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH, Fauci AS. 1986. Transforming growth factor type-β: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83:4167–4171.

    Article  PubMed  CAS  Google Scholar 

  42. Ignotz RA, Massagué J. 1986. Transforming growth factor-β stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem 261:4337–4345.

    PubMed  CAS  Google Scholar 

  43. Varga J, Jimenez SA. 1986. Stimulation of normal human fibroblast collagen production and processing by transforming growth factor-TGF-beta. Biochem Biophys Res Commun 138:974–980.

    Article  PubMed  CAS  Google Scholar 

  44. Raghow R, Postlethwaite AE, Keski-Oja J, Moses HL, Kang AH. 1987. Transforming growth factor-TGF-β increase steady level of type I procollagen and fibronectin messenger RNAs posttranscriptionally in cultured human dermal fibroblasts. J Clin Invest 79:1285–1288.

    Article  PubMed  CAS  Google Scholar 

  45. Fine A, Goldstein RH. 1987. The effect of transforming growth factor-TGF-β on cell proliferation and collagen formation by lung fibroblasts. J Biol Chem 262:3897–3902.

    PubMed  CAS  Google Scholar 

  46. Zhou G, Tyagi SC, Weber KT. 1993. Bradykinin regulates collagen turnover in cardiac fibroblasts. Clin Res 41.630A.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Dixon, I.M.C., Pelouch, V., Sethi, R., Dhalla, N.S. (1996). Collagenous Proteins in Scar Tissue Subsequent to Myocardial Infarction. In: Dhalla, N.S., Singal, P.K., Takeda, N., Beamish, R.E. (eds) Pathophysiology of Heart Failure. Developments in Cardiovascular Medicine, vol 168. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1235-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1235-2_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8525-0

  • Online ISBN: 978-1-4613-1235-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics